References
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Abramowitz, M. and Stegun, I.A. (1965), Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
- Aoki, Y., Yamada, K. and Ishikawa, T. (2008), "Effect of hygrothermal condition on compression after impact strength of CFRP laminates", Compos. Sci. Technol., 68, 1376-1383. https://doi.org/10.1016/j.compscitech.2007.11.015
- Ascher, U.M., Mattheij, R.M.M. and Russell, R.D. (1988), Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall, Englewood Cliffs.
- Belendez, A., Alvarez, M.L., Fernandez, E. and Pascual, I. (2009), "Linearization of conservative nonlinear oscillators", Eur. J. Phys., 30, 259-270. https://doi.org/10.1088/0143-0807/30/2/004
- Boley, B.A. and Weiner, J.H. (1997), Theory of Thermal Stresses, Dover Publications, New York.
- Cisternas, J. and Holmes, P. (2002), "Buckling of extensible thermoelastic rods", Math. Comput. Model., 36, 233-243. https://doi.org/10.1016/S0895-7177(02)00122-X
- Coffin, D.W. and Bloom, F. (1999), "Elastica solution for the hygrothermal buckling of a beam", Int. J. Nonlin. Mech., 34, 935-947. https://doi.org/10.1016/S0020-7462(98)00067-5
- Dafedar, J.B. and Desai1, Y.M. (2002), "Thermomechanical buckling of laminated composite plates using mixed, higher-order analytical formulation", J. Appl. Mech., 69, 790-799. https://doi.org/10.1115/1.1490372
- Denman, H.H. (1969), "An approximate equivalent linearization technique for nonlinear oscillations", J. Appl. Mech.-T. ASME, 36, 358-360. https://doi.org/10.1115/1.3564651
- El Naschie, M.S. (1976), "Thermal initial post-buckling of the extensional elastica", Int. J. Mech. Sci., 18, 321-324. https://doi.org/10.1016/0020-7403(76)90034-5
- Jekot, T. (1996), "Non-linear problems of thermal buckling of a beam", J. Therm. Stresses, 19(4), 359-367. https://doi.org/10.1080/01495739608946180
- Jonckheere, R.E. (1971), "Determination of the period of nonlinear oscillations by means of Chebyshev polynomials", ZAMM-Z. Angew. Math. Mech., 51, 389-393. https://doi.org/10.1002/zamm.19710510508
- Kundu, C.K. and Han, J.H. (2009), "Nonlinear buckling analysis of hygrothermoelastic composite shell panels using finite element method", Compos. Part B, 40, 313-C328. https://doi.org/10.1016/j.compositesb.2008.12.001
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 347-371.
- Lal, A., Singh, B.N. and Kale, S. (2011), "Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygrothermomechanical loading", Compos. Struct., 93, 1187-1200. https://doi.org/10.1016/j.compstruct.2010.11.005
- Li, P.S., Sun, W.P. and Wu, B.S. (2008), "Analytical approximate solutions to large amplitude oscillation of a simple pendulum", J. Vib. Shock, 27, 72-74. (In Chinese)
- Li, G.Q., Wang, P.J. and Hou, H.T. (2009), "Post-buckling behaviours of axially restrained steel columns in fire", Steel Compos. Struct., 9(2), 89-101. https://doi.org/10.12989/scs.2009.9.2.089
- Li, S.R. and Cheng, C.J. (2000), "Analysis of thermal post-buckling of heated elastic rods", Appl. Math. Mech. (English Ed.), 21, 133-140. https://doi.org/10.1007/BF02458513
- Liu, L., Kardomateas, G.A., Birman, V., Holmes, J.W. and Simitses, G.J. (2006), "Thermal buckling of a heatexposed, axially restrained composite column", Compos. Part A, 37, 972-980. https://doi.org/10.1016/j.compositesa.2005.04.006
- Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Sijthoff and Noordhoff, Alphen a/d Rijn.
- Vaz, M.A. and Solano, R.F. (2003), "Post-buckling analysis of slender elastic rods subjected to uniform thermal loads", J. Therm. Stresses, 26, 847-860. https://doi.org/10.1080/01495730306293
- Wang, X. and Dong, K. (2007), "Local buckling for triangular and lemniscate delaminations near the surface of laminated cylindrical shells under hygrothermal effects", Compos. Struct., 79, 67-75. https://doi.org/10.1016/j.compstruct.2005.11.029
- Wu, B.S., Lim, C.W. and Sun, W.P. (2006a), "Improved harmonic balance approach to periodic solutions of nonlinear jerk equations", Phys. Lett. A, 354, 95-100. https://doi.org/10.1016/j.physleta.2006.01.020
- Wu, B.S., Sun, W.P. and Lim, C.W. (2006b), "An analytical approximate technique for a class of strong nonlinear oscillators", Int. J. Nonlin. Mech., 41, 766-774. https://doi.org/10.1016/j.ijnonlinmec.2006.01.006
- Wu, B.S., Yu, Y.P. and Li, Z.G. (2007), "Analytical approximations to large post-buckling deformation of elastic rings under uniform hydrostatic pressure", Int. J. Mech. Sci., 49, 661-668. https://doi.org/10.1016/j.ijmecsci.2006.11.003
- Ziegler, F. and Rammerstorfer, F.G. (1989), Thermoelastic Stabiliy, Ed. Hetnarski, R.B., Temperature Stresses III Ch. 2, Elsevier, Amsterdam.
Cited by
- Brief and accurate analytical approximations to nonlinear static response of curled cantilever micro beams vol.56, pp.3, 2015, https://doi.org/10.12989/sem.2015.56.3.461
- Probabilistic analysis of micro-film buckling with parametric uncertainty vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.697
- Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.109
- Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface vol.49, pp.4, 2014, https://doi.org/10.12989/sem.2014.49.4.427