• Title/Summary/Keyword: Nondimensional analysis

Search Result 74, Processing Time 0.019 seconds

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Comparison of the Performance of Pivoted Pad Thrust Bearings (피봇식 패드 추력베어링의 성능 비교)

  • 김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 1998
  • In this paper the lubrication performances of line pivoted pad thrust bearing and point pivoted pad thrust bearing are studied by a numerical analysis. The running characteristic parameters such as nondimensional load carrying capacity nondimensional friciton power loss nondimensional flow rate and film thickness ratios are calculated for various circumferential pivot positions. The results provide a usdful data for the selection of pivot position in a pivoted and thrust bearing.

  • PDF

Shore Attachement of Jet in Flowing Environment (흐름수역에서 ?흐름의 연안귀환)

  • Yoon, Tae Hoon;Yook, Woon Soo;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.43-52
    • /
    • 1992
  • The shore attachment of jet in a cross flow is analysed by experiments and dimensional analysis. The jet flow is discharged with the same depth as that of the cross flow through a side channel perpendicular to the cross flow through a side channel perpendicular to the cross flow. For a momentum jet, nondimensional attachment length and height are dependent on nondimensional characteristic length $I_m/W$. For a buoyant jet, nondimensional attachment length is affected by $I_b/I_md$ and nondimensional temperature distribution is a function of $x/I_b$ and they all can be predicted as power laws. The shore attachment condition can be specified by velocity ratio R.

  • PDF

Free Vibration Analysis of 4 Edges Clamped, Isotropic Square Plates with 2 Collinear Circular Holes (2개의 원형구멍이 있는 4변고정, 등방성 정사각형 판의 자유진동해석)

  • 이영신;이윤복
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.283-295
    • /
    • 1994
  • This work presents the experimental and finite element analysis results for the free vibration of 4 edges clamped, isotropic square plates with 2 collinear circular holes. Natural frequencies of finite element analysis are obtained for the complete square plate, the square plates with a central circular hole and the square plates with 2 collinear circulare holes. And natural frequencies are experimentally measured for the complete square plate, the square plate with a central circular hole(d = 150 mm) and the square plates with 2 collinear circular holes. Agreement between experimental and FEM results is excellent. Mode shapes in special case are presented. The conclusions of the study are as follows. There is little variation of nondimensional frequency parameters for the first six mode when the aspect ratio of circular hole is less than 1/6 in the isotropic square plates with 2 collinear circular holes. And the first nondimensional frequency parameter doesn't vary as the aspect ratio of circular hole increase.

  • PDF

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

Windmilling Characteristics of Centrifugal-Flow Turbojets

  • Yoo, Il-Su;Song, Seung Jin;Lim, Jin Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2021-2031
    • /
    • 2004
  • A new nondimensional method for predicting the windmilling performance of centrifugal -flow turbojet engines in flight has been developed. The method incorporates loss correlations to estimate the performance of major engine components. Given basic engine geometry, flight Mach number, and ambient conditions, this method predicts transient and steady-state windmilling performance. Thus, this method can be used during the preliminary design stage when detailed hardware geometry and component performance data are not yet available. A nondimensional time parameter is newly defined, and using this parameter, the transient performance of different types of turbojets (e.g. centrifugal vs. axial) is compared. In addition, the predictions' sensitivity to loss correlations, slip factors, and inlet ambient temperatures are analyzed.

A analysis of the robustness of a controller by Monte-Carlo method (몬테카를로 방법에 의한 제어기의 강건성 해석)

  • 정우용;홍성경;김종성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.630-635
    • /
    • 1993
  • In this paper, the Monte-Carlo method was applied to the controller robustness evaluation problems with respect to the uncertainty of critical plant parameters. The plant studied is a aerial vehicle. The-variable parameters are nondimensional stability derivatives, inertias. The nominal nondimensional stability derivatives ,were obtained from wind tunnel test. Also the nominal inertia parameters were calculated from the mass distribution along the vehicle axes. But the parameters obtained from the test or calculations are at best probable and always contain some uncertainties which one can not figure out. So some kinds of robustness evaluation method should be applied. The parametric robustness of the designed classical controller evaluated by the method turned out to be satisfactory.

  • PDF

Parameter estimation of a single turbo-prop aircraft dynamic model (단발 터어보프롭 항공기 동적 모델의 파라메터추정)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.38-44
    • /
    • 1998
  • The modified maximum likelihood estimation method is used to estimate the nondimensional aerodynamic derivatives of a single turbo-prop aircraft at a specified flight condition for the best deduction of the dynamic characteristics. In wind axes the six degree of freedom equations are algebraically linearized so that the linear state equation contains aerodynamic derivatives in a state-space form and is used in the maximum likelihood method. The simulated data added with the measurement noise is used as a flight test data which is necessary to the estimation of nondimensional aerodynamic derivatives. It is obtained by implementing the 6-DOF nonlinear flight simulation. In the flight simulation, the effects of several control input types, control deflection amplitudes, and the turbulence intensities on the statistical convergence criteria are also examined and quantitative analysis of the results is discussed.

  • PDF

Nondimensional Parametric Study of a Timoshenko Rotating Shaft Subject to Moving Mass and Compressive Axial Forces (이동질량과 압축력을 받는 티모센코 회전축의 무차원 변수 연구)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1201-1207
    • /
    • 2007
  • The Timoshenko beam theories are used to model the rotating shaft. The nondimensional equations of motion for the rotating shaft subjected to moving mass and compressive axial forces are derived by using Hamilton's principle. Influence of system parameters such as the speed ratio. the mass ratio and the Rayleigh coefficient is discussed on the response of the moving system. The effects of compressive axial forces are also included in the analysis. The results are presented and compared with the available solutions of a rotating shaft subject to a moving mass and a moving load.

Free Vibration Analysis of Arches with Thickness varying in a Discontinuous Fashion (불연속 변화단면 아치의 자유진동 해석)

  • 이병구;오상진;모정만;김현상
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.331-339
    • /
    • 1993
  • The main purpose of this paper is to present an analytical method for free vibration of arches with thickness varying in a discontinuous fashion. The ordinary differential equations governing the free vibration of these arches are derived as nondimensional forms including the effect of rotatory inertia. The governing equation are solved numerically for the circular and sinusoidal arches with hinged-hinged-hinged end clamped-clamped end constraints. As the numerical results, the effect of rotatory inertia on the natural frequencies is reported. The lowest four natural frequencies are presented as the functions of four nondimensional system parameters; the rise to span length ratio, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF