• Title/Summary/Keyword: Nonclassically Damped System

Search Result 8, Processing Time 0.07 seconds

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

Influence of Frequency Separation on Modal Coupling in Nonclassically Damped Systems (비고전적 감쇠시스템에서 주파수분리의 모드연관에 대한 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2245-2250
    • /
    • 1994
  • The normal coordinates of a nonclassically damped systems are coupled by nonzero off-diagonal elements of modal damping matrix. The relationship between modal coupling and the frequency separation of the natural modes is presented in this paper. Contrary to widely accepted beliefs, increasing the frequency separation of the natural modes does not neccessarily diminish the effect of modal coupling. Consequently, in the pratical engineering applications, wide frequency separation of the natural modes would not be sufficient for neglecting modal coupling.

On the Approximate Solution of Nonclassically Damped Linear Systems under Random Excitations (비고전적 감쇠를 갖는 랜덤 진동계의 근사적 해석기법에 대한 연구)

  • 황재혁;유병성;박지상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.108-113
    • /
    • 1998
  • Nonclassically damping comes from drastic variations of energy absorption rates of the materials in different parts of structures, or from the external damping sources inserted into the structures. In this study, an approximate method based on the real valued normal modes to analyze the responses of a nonclassically damped system under stationary random excitations has been suggested. The dynamic responses of an aircraft landing gear under stationary random excitations has been analyzed using the proposed method. It has been found by a series of simulation that this method is superior to other approaches in respect of computational effort and accuracy.

  • PDF

Frequency Response of Nonclassically Damped Linear Systems (비고전적으로 감쇠하는 선형 진동시스템의 주파수응답)

  • 황재혁;남창호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2742-2751
    • /
    • 1993
  • Nonclassically damping domes from drastic variations of energy absorption rates of the materials in different parts of structures, or from the external damping sources inserted into the structures. In this study, an approximate method to calculate the frequency response of a method is superior to other approaches in respect of computational effort and accuracy. In addition, when frequency response is calculated by neglecting the off-diagonal elements of modal damping matrix, a criterion to ensure small errors is derived. In is shown that the criterion can be described as the vector sum of each modal coupling to the corresponding mode.

Influence of the Diagonal Dominance of Modal Damping Matrix on the Decoupling Approximation (모드 댐핑 행렬의 대각선 성분 우세가 비연관화 근사에 미치는 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1963-1970
    • /
    • 1993
  • A simple technique to decouple the modal equations of motion of a linear nonclassically damped system is to neglect the off-diagonal elements of the modal damping matrix. This is called the decoupling approximation. It has generally been conceived that smallness of off-diagonal elements relative to the diagonal ones would validate its use. In this study, the relationship between elements of the modal damping matrix and the error arising from the decoupling approximation is explored. It is shown that the enhanced diagonal dominance of the modal damping matrix need not diminish the error. In fact, the error may even increase. Moreover, the error is found to be strongly dependent on the exitation. Therefore, within the practical range of engineering applications, diagonal dominance of the modal damping matrix would not be sufficient to supress the effect of modal coupling.

On the Approximate Solution of Aircraft Landing Gear Under Nonstationary Random Excitations

  • Hwang, Jai-Hyuk;Kim, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.968-977
    • /
    • 2000
  • The motion of an aircraft landing gear over a rough runway can be modeled by a nonclassically damped system subject to nonstationary random excitations. In this paper, the approximate analysis methods based on either the real or complex normal modes for the computation of nonstationary response covariances are proposed. It has been found by simulation involving a realistic example that, for the nonclassically damped random vibrational systems, the approximate solution method based on the complex normal mode is superior to other approaches with respect to the accuracy and computation time.

  • PDF

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies (중복근을 갖는 비비례 감쇠시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.205-216
    • /
    • 1998
  • A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF