• Title/Summary/Keyword: Non-symmetric mode

검색결과 25건 처리시간 0.025초

실험모드해석에 의한 승용차용 레디얼 타이어의 3차원 진동특성 (Experimental Modal Analysis for 3-D Vibration Characteristics of Radial Tire for Passenger Car under Free-Suspension)

  • 김용우;남진영
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.227-236
    • /
    • 2002
  • We have performed two kinds of experimental modal analyses fur a radial tire for passenger car under free-suspension. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained the three-dimensional natural modes, which makes it possible to grasp the features of the modes and to classify the vibrational modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the first and the second experimental analyses we have identified the cavity resonance frequency and its three-dimensional mode shape.

축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성 (3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle)

  • 김용우;남진영
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구 (A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures)

  • 손세원;권동안;홍성희
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

불연속 변단면을 갖는 원호 곡선부재의 자유진동 (Free Vibrations of Stepped Circular Arcs)

  • 오상진;진태기;최규문;이종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.429-434
    • /
    • 2002
  • The differential equations governing in-plane free vibrations of stepped circular arcs, including the effects of axial deformation, rotatory inertia and shear deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the clamped-clamped symmetric and unsymmetric circular arcs with thickness varying in a discontinuous fashion. The lowest four natural frequencies and mode shapes are presented over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF

아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법 (Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions)

  • 엄지용
    • 전자공학회논문지
    • /
    • 제54권6호
    • /
    • pp.30-39
    • /
    • 2017
  • 본 논문은 디지털영역에서의 평균화 기법을 이용한 cyclic ADC의 디지털 보정기법을 제안한다. 제안하는 보정기법은 1.5비트 MDAC의 커패시터 부정합으로 인해 발생하는 ADC의 비선형성을 보정한다. 부정합을 지니는 커패시터로 이루어진 1.5비트 MDAC은 이상적인 1.5비트 MDAC의 레지듀 플롯(residue plot)에 대해 대칭적인 레지듀 플롯을 지닌다. 커패시터 부정합을 지니는 1.5비트 MDAC의 고유한 레지듀 플롯은 대칭적인 아날로그-디지털 전달함수로 반영된다. 이상적인 아날로그-디지털 전달함수에 대해 대칭적인 두 아날로그-디지털 전달함수를 평균화함으로써, 비선형성이 보정된 아날로그-디지털 전달함수를 얻을 수 있다. 해당 아날로그-디지털 전달함수 평균화의 구현을 위해, 본 논문의 12비트 cyclic ADC는 1.5비트 MDAC의 동작 모드를 2개로 정의한다. 해당 cyclic ADC는 MDAC을 첫 번째 동작모드로 동작시킴으로써, 비선형성을 지니는 12.5비트 출력 코드를 획득한다. 샘플링 된 동일한 입력 아날로그 전압에 대해, MDAC을 두 번째 동작모드로 동작시킴으로써, cyclic ADC는 비선형성을 지니는 또 다른 12.5비트 출력 코드를 획득한다. 각 MDAC의 동작모드에 의해 발생하는 아날로그-디지털 전달함수는 이상적인 아날로그-디지털 전달함수에 대해 대칭적이기 때문에, 앞서 획득한 두 개의 비선형성을 지니는 12.5비트를 평균화함으로써, 비선형성이 보정된 최종 12비트 출력 코드를 획득할 수 있다. 제안하는 디지털 보정기법과 12비트 cyclic ADC는 $0.18-{\mu}m$ CMOS 공정을 이용하여 full-custom 형식으로 구현되었다. 측정된 SNDR(ENOB)와 SFDR은 각각 65.3dB(10.6비트 ENOB)와 71.7dB이다. 측정된 INL과 DNL은 각각 -0.30/+0.33LSB와 -0.63/+0.56LSB이다.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

A Study on Mode I Interlaminar Fracture Toughness of Foam Core Sandwich Structures

  • Sohn, Se-Won;Kwon, Dong-Ahn;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.47-53
    • /
    • 2001
  • This paper investigates the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening mode by using the double cantilever beam (DCB) specimens which are Carbon/Epoxy and foam core composites. Instead of using a DCB specimen of symmetric geometry, a non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate(G$\sub$IC/) were used and fracture toughness of foam core sandwich structures made by autoclave, vacuum bagging and hotpress were compared. Experiment, analysis using nonlinear beam bending theory, and numerical work by FEM methods were performed. Bonding surface compensation and equivalent moment of inertia were used to calculate the energy release rate in nonlinear analytical work. Conclusions of experimental, nonlinear analytical and FEM methods were compared. It is, also, shown that the vacuum bagging forming can substitute the method of autoclave without serious loss of Mode I energy release rate(G$\sub$I/).

  • PDF

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

이방성 복합재료 판에서의 램파 방정식 (The Lamb Wave Equation in a Composite Plate with Anisotropy)

  • 이상호
    • 한국군사과학기술학회지
    • /
    • 제13권1호
    • /
    • pp.126-132
    • /
    • 2010
  • A Lamb wave guided by a plate structure has dispersive characteristics because phase and group velocity change with the variation of frequency and thickness. The Lamb wave has two modes, symmetric and anti-symmetric mode, which propagates symmetrically and non-symmetrically with respect to centerline. In this paper, the derivation of Lamb wave equation with anisotropic material property is investigated. The phase velocity and group velocity dispersion curves are shown using the stiffness matrix of composite materials with the variation of angle.

이방성 복합재료에서 방향과 램파의 속도와의 관계 (The Relation between Lamb Wave Velocity and Direction in the Anisotropic materials)

  • 이상호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.559-562
    • /
    • 2010
  • 판재를 통과하며 진행하는 Lamb wave는 주파수와 두께에 따라 전파 속도가 다른 특성을 지니며 진행한다. 이러한 특성은 분산이라고 하며, 대칭과 비대칭 모드 2개의 특성을 갖는다. 특히, 복합재료에서는 방향에 따라 속도가 변화하는 특성을 갖는데, 본 논문에서는 복합재 판재에서 초음파 전파속도 실험과 이론값과 차이에 대해서 살펴 본다.

  • PDF