DOI QR코드

DOI QR Code

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Received : 2014.02.03
  • Accepted : 2014.05.02
  • Published : 2014.06.25

Abstract

In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Keywords

References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjakle, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Tech. 5, 305-330 (1999). https://doi.org/10.1006/ofte.1998.0279
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). https://doi.org/10.1038/nature01940
  3. S. A. Cerqueira Jr., "Recent progress and novel applications of photonic crystal fibers," Rep. Prog. Phys. 73, 1-21 (2010).
  4. A. Ortigoss-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, and P. St. J. Russel, "Highly birefringent photonic crystal fiber," Opt. Lett. 25, 1325-1327 (2000). https://doi.org/10.1364/OL.25.001325
  5. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). https://doi.org/10.1364/OE.9.000676
  6. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, "A single-polarization fiber," J. Lightwave Technol. LT-1, 370-374 (1983).
  7. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single-polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004). https://doi.org/10.1109/LPT.2003.819415
  8. P. Roychoudhuri, V. Poulose, C. Zhao, and C. Lu, "Near elliptic core polarization maintaining photonic crystal fiber: Modeling birefringence characteristics and realization," IEEE Photon. Techol. Lett. 16, 1301-1303 (2004). https://doi.org/10.1109/LPT.2004.826219
  9. M. J. Steel and R. M. Osgood Jr., "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001). https://doi.org/10.1109/50.920847
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Enudsen, A. Bjarklev, J. R. Jensen, and H. Simpson, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001). https://doi.org/10.1109/68.924030
  11. J. H. Liou, S. S. Huang, and C. P. Yu, "Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers," Opt. Commun. 283, 971-974 (2010) https://doi.org/10.1016/j.optcom.2009.11.018
  12. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). https://doi.org/10.1109/LPT.2003.818215
  13. T. Y. Cho, G. H. Kim, K. Lee, and S. B. Lee, "Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties," J. Opt. Soc. Korea 12, 19-24 (2008). https://doi.org/10.3807/JOSK.2008.12.1.019
  14. S. G. Lee, S. D. Lim, K. Lee, and S. B. Lee, "Broadband single-polarization single-mode operation in highly birefringent photonic crystal fiber with a depressed-index core," Jpn. J. Appl. Phys. 49, 12 (2010).
  15. P. S. Maji and P. Roy Chaudhuri, "Tunable selective liquid infiltration: Applications to low loss birefringent photonic crystal fibers (PCF) and its single mode realization," Journal of Photonics and Optoelectronics 2, 27-37 (2014).
  16. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber." Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  17. J. M. Dudley and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics 3, 85-90 (2009). https://doi.org/10.1038/nphoton.2008.285
  18. B. Kuhlmey, G. Renversez, and D. Maystre, "Chromatic dispersion and losses of microstructured optical fibers," Appl. Opt. 42, 634-639 (2003). https://doi.org/10.1364/AO.42.000634
  19. B. Dong, Q. Zhao, F. Lvjun, T. Guo, L. Xue, S. Li, and H. Gu, "Liquid-level sensor with a high-birefringence-fiber loop mirror," Appl. Opt. 45, 7767-7771 (2006). https://doi.org/10.1364/AO.45.007767
  20. S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, "Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror," IEEE Photon. Technol. Lett. 17, 1387-1389 (2005). https://doi.org/10.1109/LPT.2005.849999
  21. L. Yange, L. Bo, F. Xinhuan, Z. Weigang, Z. Guang, Y. Shuzhong, K. Guiyun, and D. Xiaoyi, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005). https://doi.org/10.1364/AO.44.002382
  22. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Select. Topics Quantum Electron. 5, 1373-1378 (1999). https://doi.org/10.1109/2944.806763
  23. L. R. Chen, "Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror," IEEE Photon. Technol. Lett. 17, 410-412 (2004).
  24. C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004). https://doi.org/10.1364/OPEX.12.002033
  25. Y. Q. Xu, S. G. Murdoch, R, Leonhardt, and J. D. Harvey, "Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator," J. Opt. Soc. Am. B 26, 1351-1356 (2009). https://doi.org/10.1364/JOSAB.26.001351
  26. M. Guasoni, V. V. Kozlov, and S. Wabnitz, "Theory of polarization attraction in parametric amplifiers based on telecommunication fibers," J. Opt. Soc. Am. B 29, 2710-2720 (2012). https://doi.org/10.1364/JOSAB.29.002710
  27. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990). https://doi.org/10.1016/0030-4018(90)90110-F
  28. C. Stephane, C. A. H. Lun, L. Rainer, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am B 19, 753-764 (2002).
  29. J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006). https://doi.org/10.1364/OE.14.002715
  30. J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). https://doi.org/10.1364/JOSAB.24.001661
  31. S. Fabian, J. Florian, E. Tino, S. Alexander, J. Cesar, L. Jens, and T. Andreas, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011). https://doi.org/10.1364/OL.36.000689
  32. N. S. Platonov, D. V. Gapontsev, V. P. Gapontsev, and V. Shumilin, "135W CW fiber laser with perfect single mode output," in Proc. Conference on Lasers and Electro-Optics (CLEO, Long Beach, California, United States, May 2002), vol. 2, pp. CPDC3-1-CPDC3-4.
  33. K. Mondal and P. Roy Chaudhuri, "Designing high performance Er+3 doped fiber amplifier based on triangular lattice photonic crystal fiber," Optics and Laser Technology 43, 1436-1441 (2011). https://doi.org/10.1016/j.optlastec.2011.04.015
  34. S. K. Varshney, K. Saitoh, M. Koshiba, B. P. Pal, and R. K. Sinha, "Design of S-band Erbium-doped, concentric dual-core photonic crystal fiber amplifiers with ASE and SRS suppression," J. Lightwave Technol. 27, 1725-1733 (2009). https://doi.org/10.1109/JLT.2009.2021991
  35. S. Roy and P. R. Chaudhuri, "Supercontinuum generation in visible to mid infrared region in square -lattice photonic crystal fiber made from highly nonlinear glasses" Opt. Commun. 282, 3448-3455 (2009). https://doi.org/10.1016/j.optcom.2009.05.062
  36. A. Baili, R. Cherif, and M. Zghal, "New design of As2Se3-based chalcogenide photonic crystal fiber for ultrabroadband, coherent, mid-IR supercontinuum generation," Proc. SPIE 8564, 856409-1 (2012).
  37. B. J. Eggleton, B. Luther-Davies, and K. Richardson, "Chalcogenide photonics," Nature Photonics 5, 141-148 (2011). https://doi.org/10.1038/nphoton.2011.309
  38. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, "Disperson properties of square-lattice photonic crystal fibers," Opt. Express 12, 941-946 (2004). https://doi.org/10.1364/OPEX.12.000941
  39. J. Im, J. Kim, U. C. Paek, and B. H. Lee, "Guiding properties of square-lattice photonic crystal fibers," J. Opt. Soc. Korea 9, 140-144 (2005). https://doi.org/10.3807/JOSK.2005.9.4.140
  40. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
  41. CUDOS MOF utilities available online: http://www.physics. usyd.edu.au/cudos/mofsoftware/
  42. T. P. White, B. T. Kuhlmey, R. C. PcPhedran, D. Maystre, G. Renversez, C. M de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). https://doi.org/10.1364/JOSAB.19.002322
  43. B. T. Kuhlmey, T. P. White, R. C. PcPhedran, D. Maystre, G. Renversez, C. M de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. II. Implementataion and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). https://doi.org/10.1364/JOSAB.19.002331
  44. B. T. Kuhlmey, R. C. PcPhedran, and C. M de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002). https://doi.org/10.1364/OL.27.001684
  45. B. T. Kuhlmey, R. C. PcPhedran, C. M de Sterke, P. A. Robinson, G. Remversez, and D. Maystre, "Microstructured optical fibers: Where's the edge?," Opt. Express 10, 1285-1290 (2002). https://doi.org/10.1364/OE.10.001285
  46. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. A 22, 1655-1661 (2005). https://doi.org/10.1364/JOSAA.22.001655
  47. P. S. Maji and P. R. Chaudhuri, "A new design of ultraflattened near-zero dispersion PCF using selectively liquid infiltration," Photonics and Optoelectronics 2, 24-31 (2013).
  48. F. Poli, A. Cucinotta, M. Fuochi, and S. Selleri, "Characterization of microstructured optical fibers for wideband dispersion compensation," J. Opt. Soc. Am. B 20, 1958-1962 (2003). https://doi.org/10.1364/JOSAA.20.001958

Cited by

  1. Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength vol.54, pp.11, 2015, https://doi.org/10.1364/AO.54.003263
  2. Tunable Fiber-Optic Parametric Amplifier Based on Near-Zero Ultraflat Dispersion PCF for Communication Wavelength vol.7, pp.3, 2015, https://doi.org/10.1109/JPHOT.2015.2438432
  3. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications vol.119, pp.11, 2016, https://doi.org/10.1063/1.4943641
  4. Tunable parametric amplifier for mid-IR application based on highly nonlinear chalcogenide material vol.117, pp.24, 2015, https://doi.org/10.1063/1.4923046
  5. Design and study on square lattice-based photonic crystal fibre under different air holes for supercontinuum generation vol.91, pp.5, 2018, https://doi.org/10.1007/s12043-018-1642-x