• Title/Summary/Keyword: Non-symmetric mode

Search Result 25, Processing Time 0.03 seconds

Experimental Modal Analysis for 3-D Vibration Characteristics of Radial Tire for Passenger Car under Free-Suspension (실험모드해석에 의한 승용차용 레디얼 타이어의 3차원 진동특성)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • We have performed two kinds of experimental modal analyses fur a radial tire for passenger car under free-suspension. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained the three-dimensional natural modes, which makes it possible to grasp the features of the modes and to classify the vibrational modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the first and the second experimental analyses we have identified the cavity resonance frequency and its three-dimensional mode shape.

3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle (축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성)

  • 김용우;남진영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures (FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구)

  • Son, Se-Won;Gwon, Dong-An;Hong, Seong-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

Free Vibrations of Stepped Circular Arcs (불연속 변단면을 갖는 원호 곡선부재의 자유진동)

  • 오상진;진태기;최규문;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.429-434
    • /
    • 2002
  • The differential equations governing in-plane free vibrations of stepped circular arcs, including the effects of axial deformation, rotatory inertia and shear deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the clamped-clamped symmetric and unsymmetric circular arcs with thickness varying in a discontinuous fashion. The lowest four natural frequencies and mode shapes are presented over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF

Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions (아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법)

  • Um, Ji-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.30-39
    • /
    • 2017
  • A digital calibration technique based on digital-domain averaging for cyclic ADC is proposed. The proposed calibration compensates for nonlinearity of ADC due to capacitance mismatch of capacitors in 1.5-bit/stage MDAC. A 1.5-bit/stage MDAC with non-matched capacitors has symmetric residue plots with respect to the ideal residue plot. This intrinsic characteristic of residue plot of MDAC is reflected as symmetric A/D transfer functions. A corrected A/D transfer function can be acquired by averaging two transfer functions with non-linearity, which are symmetric with respect to the ideal analog-digital transfer function. In order to implement the aforementioned averaging operation of analog-digital transfer functions, a 12-bit cyclic ADC of this work defines two operational modes of 1.5-bit/stage MDAC. By operating MDAC as the first operational mode, the cyclic ADC acquires 12.5-bits output code with nonlinearity. For the same sampled input analog voltage, the cyclic ADC acquires another 12.5-bits output code with nonlinearity by operating MDAC as the second operational mode. Since analog-digital transfer functions from each of operational mode of 1.5-bits/stage MDAC are symmetric with respect to the ideal analog-digital transfer function, a corrected 12-bits output code can be acquired by averaging two non-ideal 12.5-bits codes. The proposed digital calibration and 12-bit cyclic ADC are implemented by using a $0.18-{\mu}m$ CMOS process in the form of full custom. The measured SNDR(ENOB) and SFDR are 65.3dB (10.6bits) and 71.7dB, respectively. INL and DNL are measured to be -0.30/-0.33LSB and -0.63/+0.56LSB, respectively.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

A Study on Mode I Interlaminar Fracture Toughness of Foam Core Sandwich Structures

  • Sohn, Se-Won;Kwon, Dong-Ahn;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.47-53
    • /
    • 2001
  • This paper investigates the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening mode by using the double cantilever beam (DCB) specimens which are Carbon/Epoxy and foam core composites. Instead of using a DCB specimen of symmetric geometry, a non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate(G$\sub$IC/) were used and fracture toughness of foam core sandwich structures made by autoclave, vacuum bagging and hotpress were compared. Experiment, analysis using nonlinear beam bending theory, and numerical work by FEM methods were performed. Bonding surface compensation and equivalent moment of inertia were used to calculate the energy release rate in nonlinear analytical work. Conclusions of experimental, nonlinear analytical and FEM methods were compared. It is, also, shown that the vacuum bagging forming can substitute the method of autoclave without serious loss of Mode I energy release rate(G$\sub$I/).

  • PDF

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

The Lamb Wave Equation in a Composite Plate with Anisotropy (이방성 복합재료 판에서의 램파 방정식)

  • Rhee, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.126-132
    • /
    • 2010
  • A Lamb wave guided by a plate structure has dispersive characteristics because phase and group velocity change with the variation of frequency and thickness. The Lamb wave has two modes, symmetric and anti-symmetric mode, which propagates symmetrically and non-symmetrically with respect to centerline. In this paper, the derivation of Lamb wave equation with anisotropic material property is investigated. The phase velocity and group velocity dispersion curves are shown using the stiffness matrix of composite materials with the variation of angle.

The Relation between Lamb Wave Velocity and Direction in the Anisotropic materials (이방성 복합재료에서 방향과 램파의 속도와의 관계)

  • Rhee, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.559-562
    • /
    • 2010
  • A Lamb wave guided by a plate structure has dispersive characteristics because phase and group velocity change with the variation of frequency and thickness. The Lamb wave has two modes, symmetric and anti-symmetric mode, which propagated symmetrically and non-symmetrically with respect to centerline. In this paper, the Lamb wave velocity variation with respect to direction is investigated.

  • PDF