• Title/Summary/Keyword: Non-Volatile memory

Search Result 272, Processing Time 0.03 seconds

Implementation of the FAT32 File System using PLC and CF Memory (PLC와 CF 메모리를 이용한 FAT32 파일시스템 구현)

  • Kim, Myeong Kyun;Yang, Oh;Chung, Won Sup
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, the large data processing and suitable FAT32 file system for industrial system using a PLC and CF memory was implemented. Most of PLC can't save the large data in user data memory. So it's required to the external devices of CF memory or NAND flash memory. The CF memory is used in order to save the large data of PLC system. The file system using the CF memory is NTFS, FAT, and FAT32 system to configure in various ways. Typically, the file system which is widely used in industrial data storage has been implemented as modified FAT32. The conventional FAT 32 file system was not possible for multiple writing and high speed data accessing. The proposed file system was implemented by the large data processing module can be handled that the files are copied at the 40 bytes for 1msec speed logging and creating 8 files at the same time. In a sudden power failure, high reliability was obtained that the problem was solved using a power fail monitor and the non-volatile random-access memory (NVSRAM). The implemented large data processing system was applied the modified file system as FAT32 and the good performance and high reliability was showed.

Computer Modeling and characteristics of MFMIS devices Using Ferroelectric PZT Thin Film (강유전체 PZT박막을 이용한 MFMIS소자의 모델링 및 특성에 관한 시뮬레이션 연구)

  • 국상호;박지온;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.200-205
    • /
    • 2000
  • This paper describes the structure modeling and operation characteristics of MFMIS(metal-ferroelectric-metal-insulator-semiconductor) device using the Tsuprem4 which is a semiconductor device tool by Avanti. MFMIS device is being studied for nonvolatile memory application at various semiconductor laboratory but it is difficult to fabricate and analyze MFMIS devices using the semiconductor simulation tool: Tsuprem4, medici and etc. So the new library and new materials parameters for adjusting ferroelectric material and platinum electrodes in the tools are studied. In this paper structural model and operation characteristics of MFMIS devices are measured, which can be easily adopted to analysis of MFMIS device for nonvolatile memory device application.

  • PDF

Hybrid Main Memory Systems Using Next Generation Memories Based on their Access Characteristics (차세대 메모리의 접근 특성에 기반한 하이브리드 메인 메모리 시스템)

  • Kim, Hyojeen;Noh, Sam H.
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.183-189
    • /
    • 2015
  • Recently, computer systems have encountered difficulties in making further progress due to the technical limitations of DRAM based main memory technologies. This has motivated the development of next generation memory technologies that have high density and non-volatility. However, these new memory technologies also have their own intrinsic limitations, making it difficult for them to currently be used as main memory. In order to overcome these problems, we propose a hybrid main memory system, namely HyMN, which utilizes the merits of next generation memory technologies by combining two types of memory: Write-Affable RAM(WAM) and Read-Affable RAM(ReAM). In so doing, we analyze the appropriate WAM size for HyMN, at which we can avoid the performance degradation. Further, we show that the execution time performance of HyMN, which provides an additional benefit of durability against unexpected blackouts, is almost comparable to legacy DRAM systems under normal operations.

Improved Electrical Characteristics of Symmetrical Tunneling Dielectrics Stacked with SiO2 and Si3N4 Layers by Annealing Processes for Non-volatile Memory Applications (비휘발성 메모리를 위한 SiO2와 Si3N4가 대칭적으로 적층된 터널링 절연막의 전기적 특성과 열처리를 통한 특성 개선효과)

  • Kim, Min-Soo;Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Jung, Jong-Wan;Chung, Hong-Bay;Lee, Young-Hie;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.386-389
    • /
    • 2009
  • The electrical characteristics and annealing effects of tunneling dielectrics stacked with $SiO_2$ and $Si_{3}N_{4}$ were investigated. I-V characteristics of band gap engineered tunneling gate stacks consisted of $Si_{3}N_{4}/SiO_2/Si_{3}N_{4}$ (NON), $SiO_2/Si_{3}N_{4}/SiO_2$ (ONO) dielectrics were evaluated and compared with $SiO_2$ single layer using the MOS (metal-oxide-semiconductor) capacitor structure. The leakage currents of engineered tunneling barriers (ONO, NON stacks) are lower than that of the conventional $SiO_2$ single layer at low electrical field. Meanwhile, the engineered tunneling barriers have larger tunneling current at high electrical field. Furthermore, the increased tunneling current through engineered tunneling barriers related to high speed operation can be achieved by annealing processes.

Designing Hybrid HDD using SLC/MLC combined Flash Memory (SLC/MLC 혼합 플래시 메모리를 이용한 하이브리드 하드디스크 설계)

  • Hong, Seong-Cheol;Shin, Dong-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.789-793
    • /
    • 2010
  • Recently, flash memory-based non-volatile cache (NVC) is emerging as an effective solution to enhance both I/O performance and energy consumption of storage systems. To get significant performance and energy gains by NVC, it would be better to use multi-level-cell (MLC) flash memories since it can provide a large capacity of NVC with low cost. However, the number of available program/erase cycles of MLC flash memory is smaller than that of single-level-cell (SLC) flash memory limiting the lifespan of NVC. To overcome such a limitation, SLC/MLC combined flash memory is a promising solution for NVC. In this paper, we propose an effective management scheme for heterogeneous SLC and MLC regions of the combined flash memory.

Efficient Management of PCM-based Swap Systems with a Small Page Size

  • Park, Yunjoo;Bahn, Hyokyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.476-484
    • /
    • 2015
  • Due to the recent advances in non-volatile memory technologies such as PCM, a new memory hierarchy of computer systems is expected to appear. In this paper, we explore the performance of PCM-based swap systems and discuss how this system can be managed efficiently. Specifically, we introduce three management techniques. First, we show that the page fault handling time can be reduced by attaching PCM on DIMM slots, thereby eliminating the software stack overhead of block I/O and the context switch time. Second, we show that it is effective to reduce the page size and turn off the read-ahead option under the PCM swap system where the page fault handling time is sufficiently small. Third, we show that the performance is not degraded even with a small DRAM memory under a PCM swap device; this leads to the reduction of DRAM's energy consumption significantly compared to HDD-based swap systems. We expect that the result of this paper will lead to the transition of the legacy swap system structure of "large memory - slow swap" to a new paradigm of "small memory - fast swap."

Performance Analysis of NVMe SSDs and Design of Direct Access Engine on Virtualized Environment (가상화 환경에서 NVMe SSD 성능 분석 및 직접 접근 엔진 개발)

  • Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • NVMe(Non-Volatile Memory Express) SSD(Solid State Drive) is a high-performance storage that makes use of flash memory as a storage cell, PCIe as an interface and NVMe as a protocol on the interface. It supports multiple I/O queues which makes it feasible to process parallel-I/Os on multi-core environments and to provide higher bandwidth than SATA SSDs. Hence, NVMe SSD is considered as a next generation-storage for data-center and cloud computing system. However, in the virtualization system, the performance of NVMe SSD is not fully utilized due to the bottleneck of the software I/O stack. Especially, when it uses I/O stack of the hypervisor or the host operating system like Xen and KVM, I/O performance degrades seriously due to doubled-I/O stack between host and virtual machine. In this paper, we propose a new I/O engine, called Direct-AIO (Direct-Asynchronous I/O) engine, that can access NVMe SSD directly for I/O performance improvements on QEMU emulator. We develop our proposed I/O engine and analyze I/O performance differences between the existed I/O engine and Direct-AIO engine.

Research of Optimal MRAM Adding Pole for High Gb/Chip (고 Gb/Chip을 위한 Pole이 추가된 MRAM의 최적 설계에 관한 연구)

  • Kim, Dong-Sok;Won, Hyuk;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2008
  • Magnetoresistive random access memory (MRAM) don't get very public face on the field of non-volatile memory. Because recording capacity of MRAM is smaller than other non-volatile memory and structurally, magnetic efficiency of MRAM is very bad. We diminish a size of one cell in order to make MRAM of high recording capacity. But It don't make high recording field in general structures consisting of two current wire. Accordingly, We make a cell of small size is impossible. In this paper, we suggest new MRAM that it have two pole of high permeability on both ends of recording layer. Because magnetic efficiency of new MRAM is higher than exiting MRAM, it can make high recording field. And we can diminish the size of one cell due to recording layer of high coercivity. We used three-dimension finite element method to prove the reliability.

Evolution of Nonvolatile Resistive Switching Memory Technologies: The Related Influence on Hetrogeneous Nanoarchitectures

  • Eshraghian, Kamran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.243-248
    • /
    • 2010
  • The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of heterogeneous integration of technologies that are in their infancy through initiatives of material physicists, computational chemists, and bioengineers and explores the options in the spectrum of novel non-volatile memory technologies considered as forerunner of new logic devices.

Development of PCM Data Recorder for Telemetry System (원격측정용 PCM 데이터 저장장치 개발)

  • Koh, Kwang-Ryul;Lee, Sang-Bum;Lee, Hyun-Kyu;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.607-614
    • /
    • 2011
  • This paper describes the development of pulse code modulation(PCM) data recorder with design, implementation and environmental test. PCM serial data that diverged from telemetry encoder output is used as the input and is reformed to parallel signal through FPGA processing. Controllers construct the packet by the sector and record it into non-volatile memory. Compact flash(CF) memory for data storage media, USB interface for data downloading, and a software for operating status diagnosis and file format conversion are used.