• Title/Summary/Keyword: Noise Detection

Search Result 2,551, Processing Time 0.029 seconds

A Pacemaker AutoSense Algorithm with Dual Thresholds

  • Kim, Jung-Kuk;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A pacemaker autosense algorithm with dual thresholds. one for noise or tachyarrhythmia detection (noise threshold, NT) and the other for intrinsic beat detection (sensing threshold. ST), was developed to improve the sensing performance in single pass VDD electrograms. unipolar electrograms, or atrial fibrillation detection. When a deflection in an electrogram exceeds the NT (defined as 50% of 57), the autosense algorithm with dual thresholds checks if the deflection also exceeds the ST. If it does, the autosense algorithm calculates the signal to noise ratio (SNR) of the deflection to the highest deflection detected by NT but lower than ST during the last cardiac cycle. If the SNR 2, the autosense algorithm declares an intrinsic beat detection and calculates the next ST based on the three most recent intrinsic peaks. If the SNR $\geq$2, the autosense algorithm checks the number of deflections detected by NT during the last cardiac cycle in order to determine if it is a noise detection or tachyarrhythmia detection. Usually the autosense algorithm tries to set the 57 at 37.5% of the average of the three intrinsic beats, although it changes the percentage according to event classifications. The autosense algorithm was tested through computer simulation of atrial electrograms from 5 patients obtained during EP study, to simulate a worst sensing situation. The result showed that the ST levels for autosense algorithm tracked the electrogram amplitudes properly, providing more noise immunity whenever necessary. Also, the autosense algorithm with dual thresholds achieved sensing performance as good as the conventional fixed sensitivity method that was optimized retrospectively.

Effects of Noise Power Uncertainty on Energy Detection for Spectrum Sensing (잡음 전력의 불확실성이 에너지 검파 기반의 스펙트럼 감지에 미치는 영향)

  • Lim, Chang-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.22-27
    • /
    • 2011
  • In spectrum sensing, an energy detector compares the energy of a received signal with a predetermined detection threshold and decides whether a primary user is active or not in a licensed frequency band. Here the detection threshold is related to the noise power level in the band. Most previous works on energy detection have assumed that the noise power is exactly known a priori. However, this assumption does not hold in practice since there may be some uncertainty about the noise power. So it is necessary to investigate its effects on the performance of energy detection for spectrum sensing. In this paper, we analyze the effects using the residue theorem for contour integral and present the associated numerical results.

An Edge Detection Algorithm for Impulse Noise Images (임펄스 잡음 영상을 위한 에지 검출 알고리즘)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.770-772
    • /
    • 2013
  • Edges on the images are widely used in preprocessing in various areas including recognition and detection of the object. As generally known edge detection methods, there is a method using mask and these methods are Sobel, Prewitt, Roberts, Laplacian operator and etc. Implementation of these existing edge detection methods is simple. However, when processing the impulse noise added images, the properties of edge detection is not sufficient. Accordingly, in order to compensate for the weakness of existing edge detection methods and to detect strong edges on the images which were damaged by impulse noise, the edge detection algorithm using transformed mask was proposed in this paper.

  • PDF

An Edge Detection Method using Modified Mask in Impulse Noise and AWGN Environments (임펄스 잡음 및 AWGN 환경에서 변형된 마스크를 이용한 에지 검출 방법)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.265-267
    • /
    • 2013
  • Edges include various important informations of the objects. These edges are being applied in numerous areas and there is a detection method using mask in existing edge detection methods. These existing edge detection methods are simple to realize. However, because the fixed mask is used, edge detection characteristics in complicated noise environments are somewhat unsatisfactory. Therefore, to compensate for the weakness in the existing detection methods, edge detection algorithm which uses the standard deviation of local mask and noise elimination was proposed.

  • PDF

Development of Real-time QRS-complex Detection Algorithm for Portable ECG Measurement Device (휴대용 심전도 측정장치를 위한 실시간 QRS-complex 검출 알고리즘 개발)

  • An, Hwi;Shim, Hyoung-Jin;Park, Jae-Soon;Lhm, Jong-Tae;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.280-289
    • /
    • 2022
  • In this paper, we present a QRS-complex detection algorithm to calculate an accurate heartbeat and clearly recognize irregular rhythm from ECG signals. The conventional Pan-Tompkins algorithm brings false QRS detection in the derivative when QRS and noise signals have similar instant variation. The proposed algorithm uses amplitude differences in 7 adjacent samples to detect QRS-complex which has the highest amplitude variation. The calculated amplitude is cubed to dominate QRS-complex and the moving average method is applied to diminish the noise signal's amplitude. Finally, a decision rule with a threshold value is applied to detect accurate QRS-complex. The calculated signals with Pan-Tompkins and proposed algorithms were compared by signal-to-noise ratio to evaluate the noise reduction degree. QRS-complex detection performance was confirmed by sensitivity and the positive predictive value(PPV). Normal ECG, muscle noise ECG, PVC, and atrial fibrillation signals were achieved which were measured from an ECG simulator. The signal-to-noise ratio difference between Pan-Tompkins and the proposed algorithm were 8.1, 8.5, 9.6, and 4.7, respectively. All ratio of the proposed algorithm is higher than the Pan-Tompkins values. It indicates that the proposed algorithm is more robust to noise than the Pan-Tompkins algorithm. The Pan-Tompkins algorithm and the proposed algorithm showed similar sensitivity and PPV at most waveforms. However, with a noisy atrial fibrillation signal, the PPV for QRS-complex has different values, 42% for the Pan-Tompkins algorithm and 100% for the proposed algorithm. It means that the proposed algorithm has superiority for QRS-complex detection in a noisy environment.

Signal Detection in Non-Additive Noise Using Rank Statistics: Signal-Dependent Noise and Random Signal Detection (비가산성 잡음에서 순위 통계량을 이용한 신호 검파 : 신호의존성 잡음과 확률 신호 검파)

  • 송익호;김상엽;김선용;손재철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.955-961
    • /
    • 1990
  • Test statistics are obtained for detection of weak signals in signal-dependent noise using rank statistics. A generalized model is used in this paper in order to consider non-additivenoise as well as purely-additive noise. Locally optimum rank detectors for the model are shown to have similarity to locally optimum detectors and to be generalizations of these for the purely-additive noise model. A similar result is obtained for multi-input cases.

  • PDF

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.

Fast ROI Detection for Speed up in a CNN based Object Detection

  • Kim, Jin-Sung;Lee, Youhak;Lee, Kyujoong;Lee, Hyuk-Jae
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • Fast operation of a CNN based object detection is important in many application areas. It is an efficient approach to reduce the size of an input image. However, it is difficult to find an area that includes a target object with minimal computation. This paper proposes a ROI detection method that is fast and robust to noise. The proposed method is not affected by a flicker line noise that is a kind of aliasing between camera and LED light. Fast operation is achieved by using down-sampling efficiently. The accuracy of the proposed ROI detection method is 92.5% and the operation time for a frame with a resolution of 640 × 360 is 0.388msec.

Signal Detection Based on a Decreasing Exponential Function in Alpha-Stable Distributed Noise

  • Luo, Jinjun;Wang, Shilian;Zhang, Eryang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.269-286
    • /
    • 2018
  • Signal detection in symmetric alpha-stable ($S{\alpha}S$) distributed noise is a challenging problem. This paper proposes a detector based on a decreasing exponential function (DEF). The DEF detector can effectively suppress the impulsive noise and achieve good performance in the presence of $S{\alpha}S$ noise. The analytical expressions of the detection and false alarm probabilities of the DEF detector are derived, and the parameter optimization for the detector is discussed. A performance analysis shows that the DEF detector has much lower computational complexity than the Gaussian kernelized energy detector (GKED), and it performs better than the latter in $S{\alpha}S$ noise with small characteristic exponent values. In addition, the DEF detector outperforms the fractional lower order moment (FLOM)-based detector in $S{\alpha}S$ noise for most characteristic exponent values with the same order of magnitude of computational complexity.

Adaptive Switching Median Filter for Impulse Noise Removal Based on Support Vector Machines

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Ok;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.871-886
    • /
    • 2011
  • This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.