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Abstract 
 

Signal detection in symmetric alpha-stable ( S Sα ) distributed noise is a challenging problem. 
This paper proposes a detector based on a decreasing exponential function (DEF). The DEF 
detector can effectively suppress the impulsive noise and achieve good performance in the 
presence of S Sα noise. The analytical expressions of the detection and false alarm 
probabilities of the DEF detector are derived, and the parameter optimization for the detector 
is discussed. A performance analysis shows that the DEF detector has much lower 
computational complexity than the Gaussian kernelized energy detector (GKED), and it 
performs better than the latter in S Sα  noise with small characteristic exponent values. In 
addition, the DEF detector outperforms the fractional lower order moment (FLOM)-based 
detector in S Sα  noise for most characteristic exponent values with the same order of 
magnitude of computational complexity.  
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1. Introduction 

Signal detection is a classical and important problem in signal processing. In this paper, 
signal detection means to judge whether the primary signal is present or not in the data under 
review. This problem is usually modeled as a binary hypothesis problem with Gaussian noise. 
However, in many applications, the background noise is non-Gaussian and shows impulsive 
behavior, e.g., man-made noise, power line noise, underwater acoustic noise and interference 
from other users [1, 2]. In impulsive noise, traditional detectors that are optimized under the 
Gaussian assumption suffer from serious performance degradation due to the noise model 
mismatch. Thus, more accurate models for impulsive noise are required. Empirical data have 
proven that the symmetric alpha-stable ( S Sα ) distribution is a successful model for impulsive 
noise, and this distribution has been widely used in the literature. In [3], the authors proved 
that the cochannel interference was S Sα  distributed using a theoretical analysis and 
numerical simulations. In [4], underwater acoustic noise was well modeled using an S Sα  
distribution. In [5], the noise fitting procedure indicated that the S Sα  distribution could fit the 
noise from GSM-R antennas much better than the Middleton Class-A model and Gaussian 
distribution. In this paper, we also utilize the S Sα  distribution to model impulsive noise. 

In the literature, the proposed detectors for detection in S Sα  noise can be categorized into 
two groups. The first group of detectors require prior knowledge of the transmitted signal. 
These include optimal detectors based on the Neyman-Pearson lemma and locally optimal 
detectors based on a weak signal assumption [1]. Because the probability density function 
(PDF) of S Sα  noise has no closed-form expression, except for some special cases, the 
optimal and locally optimal detectors should be implemented through numerical methods; 
these methods result in a heavy computational burden. Thus, locally suboptimal detectors have 
been proposed, such as the soft limiter, hole puncher and local Cauchy detector [6]. In contrast, 
models have been proposed to approximate the PDF of S Sα  distributions, e.g., the Gaussian 
mixture model [7], Cauchy Gaussian model [8] and Bi-parameter Cauchy Gaussian model [9]. 
Based on these approximate models, near optimal detectors have been proposed, but they are 
still too complex [10, 11]. In [4], the sign correlation detector was investigated. This detector 
is easy to implement and does not require noise statistics, but it still requires prior knowledge 
of the primary signal. 

The other group of detectors utilizes blind detection methods without prior knowledge of 
the transmitted signal. In many practical applications, e.g., communication countermeasures 
and spectrum sensing, the transmitted signal is usually not available, so blind detectors are 
required. The generalized likelihood ratio test (GLRT) is an optimal solution [12], but its 
calculation is too large for real-time applications. The blind Cauchy detector, which is a 
special case of the GLRT, only performs well for a few characteristic exponent values α . The 
fractional lower order moment (FLOM) is an effective tool for signal processing in S Sα  
noise and is often utilized for parameter estimation [13, 14, 15]. Recently, the FLOM-based 
detector was presented, and its performance was investigated in [16]. The FLOM detector 
performs better than the blind Cauchy detector and is easy to implement. In [5], a generalized 
covariation coefficient absolute value (CCAV) detector was proposed, and it is based on the 
covariation properties of S Sα  processes. A myriad filter-based method that utilizes the 
remarkable capability of the myriad filter to filter heavy-tailed noise has also been proposed. 
The myriad filter-based method exhibits good performance in S Sα  noise. However, the 
myriad filter requires priori knowledge and has a high computational complexity. With the 
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development of kernel theory, kernel-based methods have been introduced in spectrum 
sensing. In [17], a kernelized energy detector (KED) was proposed. Among the different 
kernel functions, the Gaussian kernelized energy detector (GKED) has exhibited the best 
performance in S Sα  noise and performs much better than the FLOM and CCAV detectors. 

Although the GKED detector performs well in S Sα  noise, it has two disadvantages. First, 
the GKED detector shows much higher computational complexity than the FLOM detector. 
Second, it fails to detect the primary signal when the DC level is transmitted. Therefore, a 
more efficient and robust detector is required. After studying the hole puncher, soft limiter, 
FLOM, and kernelized energy detectors and M-estimate functions of adaptive filters in 
impulsive noise, we recognized that a good detector in S Sα  noise should suppress the adverse 
effects of the impulses in the input signal. A limiter or decreasing function will be beneficial 
for detectors in S Sα  noise. Based on this recognition, a detector based on a decreasing 
exponential function (DEF) is proposed. The analytical expressions of the detection and false 
alarm probabilities are derived, and the best parameter for the DEF detector is calculated. The 
performance analysis shows that the DEF detector has much lower computational complexity 
than the GKED detector and can successfully detect the primary DC level signal. In impulsive 
S Sα  noise with small values of characteristic exponent α , the DEF detector performs better 
than the GKED detector. In addition, the DEF detector outperforms the FLOM detector in 
S Sα  noise for most values of characteristic exponent α  at the same computational 
complexity. Therefore, the proposed detector obtains good detection performance with low 
computational complexity and achieves a better compromise between the detection accuracy 
and computational complexity than the GKED and FLOM detectors. 

The remainder of the paper is organized as follows. In section 2, the system and noise 
models are presented, and a few conventional detectors are also introduced. In section 3, the 
DEF detector is proposed, the expressions of the detection and false alarm probabilities of the 
proposed detector are derived, and the parameter optimization is investigated. Then, the 
complexity of the proposed detector is compared with the GKED detector. In section 4, 
extensive simulation results are provided to verify the performance of the DEF detector. 
Finally, conclusions are drawn in section 5. 

2. Problem Formulation 

2.1 System and Noise Models 
In this paper, signal detection is the ability to determine whether a signal is present or not. Here, 
signal detection can be formulated as a binary hypothesis testing problem as follows 

 0

1

( ) ( )
: ( ) ( ) ( ), 1,2, ,

H z n w n
H z n hs n w n n N

=
 = + = 

：
  (1) 

where 0H  and 1H  indicate the signal-absent and -present cases, respectively, ( )z n  is the 
received data sample, ( )w n  represents the impulsive noise modeled by the S Sα  distribution, 

( )s n  is the transmitted signal and h  is the channel gain. Moreover, ( )s n  can be modeled as a 
Gaussian random process with zero mean, and it is assumed to be independent of the noise 

( )w n . 
Except for some special cases, the S Sα  distribution does not have a closed-form 

expression for the PDF, so it is usually described by its characteristic function 
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 ( ) exp( )t t α
αϕ γ= −   (2) 

where 0 2α< ≤ , 0γ > . The characteristic exponent α  determines the heaviness of the 
distribution tail, and smaller α  values correspond to a heavier tail. The dispersion parameter 
γ  indicates the degree of the dispersion spread, which is similar to the variance in a Gaussian 
distribution. The PDF is the inverse Fourier transform of the characteristic function, namely, 

 
0

1( ) ( )cos( )f x t tx dtα αϕπ
∞
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When 2α =  and 1α = , the PDF in (3) has a closed-form expression, and the S Sα  
distribution reduces to a Gaussian distribution and Cauchy distribution, respectively. 

For S Sα  noise with 0 2α< < , the second- and higher-order moments do not exist, so the 
conventional definition of the signal-to-noise ratio (SNR) for the Gaussian noise cannot be 
used. Because the dispersion parameter γ  is similar to the variance in the Gaussian process, 
we can use the generalized signal-to-noise ratio (GSNR), which is defined as [16] 

 
2 2

10GSNR 10log s hs s
γ

=   (4) 

where 2 2[| ( ) | ]s E s ns =  and 2 2[| | ]h E hs = . 

2.2 Conventional Detectors 
In the case of 0 2α< < , the second- and higher-order moments of the S Sα  process do not 
exist, so the traditional detectors based on these moments suffer from drastic performance 
degradation. However, the FLOMs of any order less than α  do exist. In [16], a detector based 
on FLOMs was investigated; the detector was defined as 

 
1

1 ( )
N

p
FLOM

n
T z n

N =

= ∑   (5) 

where p  is the order of the fractional moment. The choice of p  mainly depends on the 
characteristic exponent α . 

In [17], the KED was proposed. Because the KED detector incorporates not only the 
fractional lower moments but also the higher order moments of the received signal, it performs 
well in Gaussian or non-Gaussian noise. In S Sα  noise, the KED based on the Gaussian 
kernel function (GKED), performs better than the detectors based on the other kernel functions, 
such as the Laplacian and inverse multiquadratic kernels. The GKED detector is defined as 
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where ( )z i  and ( )z j  are two different received samples and c  is the kernel bandwidth, 
which has an important effect on the detection performance. The Gaussian kernel function can 
be regarded as a dot product of the input data in the feature space, and it employs the similarity 
between the received samples for signal detection. When the primary signal is the DC level, 

( ) ( )z i z j−  in (6) has the same distribution under both hypotheses, 0H  and 1H , so the 
detection probability is equal to the given false alarm probability. Therefore, the GKED 
method fails to detect the DC signal, as will be seen in section 4. 
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3. Proposed Detector and Performance Analysis 

3.1 Proposed Detector 
After studying the nonblind and blind detection methods, we found that these methods can 
sufficiently suppress large inputs; this result is the reason why they perform well in S Sα  noise. 
When the input is larger than a certain threshold, the output of the soft limiter and hole puncher 
tends to be constant and zero, respectively [1]. Thus, the detectors can suppress the adverse 
effects of the impulses in the input signal. When p  decreases, the output of the power function 
| z |p  in (5) decreases, and it can suppress the impulsive noise more effectively; hence, the 
FLOM detector performs better in S Sα  noise [16]. For an adaptive filter in impulsive noise, a 
down-weight nonlinear function is usually used to suppress the effect of a large input. From 
the above analysis, we recognize that a good detector for S Sα  noise should be able to 
suppress the impulsive input, and a limiter or decreasing function is a good choice for the 
detector. Based on this recognition, an effective detector based on a decreasing exponential 
function (DEF) is proposed, and it is defined as 
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where c  is a scale parameter that controls the decreasing speed of the output. The detection 
threshold η  can be calculated based on the noise-only samples under a given false alarm 
probability fP . When the statistic DETT  is smaller than the threshold η , we determine that a 

signal is present. The function z ce− is bounded for any input z , namely, 0 1z ce−≤ ≤ , so the 
statistic in (7) satisfies the Hoeffding’s inequality [18] 

 [ ]( ) 222 N
DEF DEFP T E T e δδ −− ≥ ≤   (8) 

where δ  is a small positive value. This inequality indicates that the deviation in of the statistic 
DEFT  from the expectation value is small. Achieving a small deviation is an essential 

requirement that enables the detector to make an accurate decision between the two 
hypotheses. 

We can understand the reason why the proposed detector can achieve good performance in 
S Sα  noise from two different perspectives. When the input z  is sufficiently large, the output 
of the exponential function z ce−  in (7) tends to be zero. This means that the proposed detector 
can suppress the adverse effects of the large input. In addition, in S Sα  noise, the large input 
signal is dominated by the impulsive noise and can be approximately regarded as impulsive 
noise. Therefore, the proposed detector can effectively suppress the impulsive noise and 
improve the output signal-to-noise ratio (SNR), which results in good detection performance 
in S Sα  noise. From another perspective, using a generalized Taylor series expansion [17], the 
DEF detector can be represented by higher order moments and fractional lower order moments, 
which makes the DEF detector have a good performance in impulsive noise. We can also 
compare the detection performance of the DEF and FLOM detectors from the two 
perspectives. When the input signal amplitude is sufficiently large, the output of the power 
function | z |p  in (5) is always larger than one, which is much larger than the output of z ce− . 
This means that the DEF detector is more capable of suppressing the impulsive noise. From 
the perspective of the moments, the DEF detector employs both the fractional lower order 
moments and the higher order moments, while the FLOM detector only employs the fractional 
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lower order moments. Thus, the DEF detector can perform better than the FLOM detector in 
S Sα  noise; this conclusion will be illustrated using the simulation results. 

Comparing (7) with (6), the DEF and GKED detectors are both the sum of the exponential 
functions of the received data, but the two detectors are different in essence, resulting in 
different detection performances and degrees of computational complexity. The GKED 
detector is the bivariate function of two different received data: ( )z i  and ( )z j . The Gaussian 
kernel can be regarded as an inner product in the feature space, and the GKED detector 
employs the similarity of the received data for signal detection [17]. In contrast, the DEF 
detector is a univariate function of only one received data ( )z n , and it cannot represent an 
inner product in the feature space. The DEF detector employs the decreasing exponential 
function to suppress impulsive noise to achieve good detection performance. 

3.2 False Alarm and Detection Probabilities in non-Fading Channels 

Because z ce−  is a bounded function, the mean and variance of the proposed statistic are finite. 
The statistic DEFT  is the sum of N  independent and identically distributed (i.i.d.) random 
variables under both hypotheses. According to the central limit theorem, the statistic DETT  
follows the asymptotic Gaussian distribution when N  is large. To obtain the false alarm and 
detection probabilities, we calculate the mean and variance of the statistic DEFT . 

Under hypothesis 0H , we first calculate the first moment 01m  and second moment 02m  of 
the function ( )z n ce− . Because ( )w n  is i.i.d., 01m  and 02m  can be calculated as 
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Then, the mean and variance of the statistic DEFT  are 
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Under hypothesis 1H , ( ) ( ) ( )z n hs n w n= + . Note that h  remains constant during the 

detection period, so ( )hs n  still obeys a Gaussian distribution: ( ) ( )2 20, shs n N h s . As we 
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know, the characteristic function of the sum of independent random variables is equal to the 
product of the characteristic functions of each random variable [19]. Then, the characteristic 
function of ( )z n  is obtained as 

 ( ) ( ) ( )
2 2

2exp
2

s
z hs w

ht t t t tα s
γ
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Using a similar procedure as with (9) and (10), we obtain 
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Then, the mean and variance of the statistic DEFT  under 1H  are defined as follows 

 1 11mm =   (16) 

 ( )2 2
1 12 11

1 m m
N

s = −   (17) 

Because DEFT  obeys asymptotic Gaussian distribution, the false alarm and detection 
probabilities can be obtained as 

 { } 0
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0

| 1f DETP P T H Q η m
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s
 −
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  (18) 
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| 1d DETP P T H Q η mη
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 −
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Although closed-form expressions for fP  and dP  do not exist, we can evaluate them using 
numerical methods. 

3.3 False Alarm and Detection Probabilities in Rayleigh Fading Channels 
In Rayleigh fading channels, fP  remains the same as that in (18). By averaging dP  over the 

channel gain h , we can derive the average detection probability dP  in Raleigh fading 
channels. Thus, dP  in (19) can be regarded as a conditional probability and rewritten as 

( )dP h . The average detection probability dP  in Rayleigh fading channels can be obtained as 

 ( )d h dP E P h=      (20) 

Since the channel gain obeys a Rayleigh distribution, its PDF is shown as 
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where [ ]2 2 E hs π= . Thus, dP  can be calculated as 
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A closed-form expression for dP  is difficult to find, but we can evaluate it using numerical 
methods. 

3.4 Parameter Optimization for the Statistics 
From (7), parameter c  has an important effect on the performance of the DEF detector, so we 
should carefully choose parameter c  to achieve good performance. The best value of c  is the 
one that maximizes the detection probability under a given false alarm probability, namely, 
 ( ) ( )max subject tod fc

P c P c C=   (23) 

where C  is a given false alarm probability. The analytical expressions of fP  and dP  are 

presented in (18) and (19), respectively. Because ( )Q x  in (19) is a monotonically decreasing 
function, the maximization of dP  is equivalent to the maximization of 

( )( )1
0 0 1 11 fQ Ps m m s− − + − . Then, the equality-constrained maximization problem in (23) 

can be transformed into an unconstrained maximization problem, namely, 
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The best value of c  should satisfy the following necessary condition 
 ( ) 0G c′ =   (25) 

An analytical solution for (25) is difficult to find, but we can solve it using an iterative 
optimization algorithm, such as the descent method. 

3.5 Complexity Analysis 
In this section, we compare the computational complexity of the DEF detector with that of the 
GKED detector. In (6), the absolute square operation is equivalent to multiplication, and in (7), 
the absolution is equivalent to addition. Then, we can use the number of the exponent, 
multiplication and addition calculations to determine the complexity of the two detectors. The 
results are listed in Table 1. 
 

Table 1. Number of operations of the DEF and GKED detectors 
Method Exponent Multiplication Addition 

DEF  N N 2N-1 
GKED N(N-1)/2 N(N-1) N(N-1)-1 
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From the table, the complexity of DEF detector is ( )O N , and that of the GKED detector is 

( )2O N . Similar to the DEF detector, the complexity of the FLOM detector is also ( )O N . 
Thus, the DEF detector has much lower computational complexity than the GKED detector. In 
addition, the computational complexity of the DEF and FLOM detectors are of the same order 
of magnitude. 

4. Performance Evaluation 
In this section, the performance of the DEF detector is evaluated using the numerical results. 
As mentioned before, the transmitted signal is a Gaussian process with zero mean, unless 
otherwise specified. The noise follows an i.i.d. S Sα  distribution. The iterative number of 
Monte Carlo simulations is 50000. Other parameters are specified in the figures. 

Fig. 1 shows the receiver operating characteristic (ROC) curves of the DEF detector in 
non-fading channels, where 100N =  and GSNR 2= −  dB. The curves were obtained from 
the simulation using (7) and by evaluating the analytical expressions in (18) and (19). Without 
losing generality, the parameter c  was set to one. The analytical curves are consistent with the 
simulated curves for different α  and γ values. In addition, for a fixed false alarm probability, 
the detection probability increases with the increment of α  when 3γ = , whereas it decreases 
with the increment of α  when 1γ = . Therefore, the relationship between the detection 
probability and α  depends on the values of γ . 
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Fig. 1. ROC curves of the analytical and simulation results for the DEF detector, where 100N = , 

GSNR 2= −  dB, and 1c = . 
 

To observe the relationship between the detection probability and α  more clearly, the 
simulation results are presented in Fig. 2 under different GSNR and γ  values, where 

500N =  and 0.1fP = . When 1γ =  and GSNR 6= −  dB, the detection probability decreases 
with the increment of α ; when 3γ =  or 5γ = , the detection probability first decreases and 
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then increases with the increment of α . These results further prove the conclusion that the 
relationship between the detection probability and α  is related to γ . In addition, we noticed 
an unexpected phenomenon. When GSNR 6= −  dB and 1γ = , the detection probability for 
small values of α  is larger than that for large values of α ; this result indicates that the 
detection performance is better in the presence of increased impulsive noise. In contrast, 
researchers typically intuitively believe that more impulsive noise results in worse detection 
performance; here, we prove that this correlation is not always true, according to the 
simulation results, because the detection probability depends not only on the background noise 
but also on the detector. 
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Fig. 2. Detection probability versus α  for the DEF detector, where 500N =  and 0.1fP = . 
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Fig. 3. Detection probability versus parameter c  for the DEF detector, where 1γ = , 100N = , 

GSNR 0=  dB, and 0.1fP = . 
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Fig. 3 shows the relationship between the detection probability and parameter c  for the 
DEF detector for different values of α , where 1γ = , 100N = , GSNR 0=  dB, and 0.1fP = . 
The curves were obtained using Monte Carlo simulations and are referred to as “MC”. The 
best detection probabilities calculated under the best parameter c  are also indicated, referred 
to as “OC”, where the best parameter c  is obtained by solving (24) using the descent method. 
Each best point is located only at the vertex of each curve; hence, the best value of c  
calculated using the descent method is the value that maximizes the detection probability. 
Using the best value of parameter c , we can ensure that the DEF detector exhibits optimal 
performance for different S Sα  noises. 
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Fig. 4. Detection probability versus parameter c  or p  for the DEF, GKED and FLOM detectors 

with the DC signal, where 2a = , 1γ = , 200N = , GSNR 2= −  dB, and 0.1fP = . 

 
Fig. 4 shows the detection probability versus parameter c  or p  for the DEF, GKED and 

FLOM detectors with the DC signal, where 2α = , 1γ = , 200N = , GSNR 2= −  dB and 
0.1fP = . The detection probability of the GKED method is equal to the given false alarm 

probability. Thus, the GKED detector fails to detect the DC signal. When 2p = , the FLOM 
detector becomes the energy detector and achieves the best detection performance; this result 
evidences that the energy detector is the optimal blind detection method for Gaussian noise, 
namely, S Sα  noise with 2α = . The best detection probability of the DEF detector that 
corresponds to the vertex of the curve is approximately 0.9, which is slightly lower than that of 
the energy detector. The results in the figure indicate that the DEF detector can successfully 
detect the DC signal and approach the optimal performance of the energy detector in Gaussian 
noise. 
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Fig. 5. Detection probability versus parameter c  or p for the DEF, GKED and FLOM detectors, 

where 2,1.5a = , 1γ = , 100N = , GSNR 0=  dB, and 0.1fP = . 
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Fig. 6. Detection probability versus parameter c  or p  for the DEF, GKED and FLOM detectors, 

where 1,0.5a = , 1γ = , 100N = , GSNR 0=  dB, and 0.1fP = . 

 
Fig. 5 shows the curves between the detection probability and parameter c  or p  of the 

DEF, GKED and FLOM detectors in non-fading channels with a Gaussian signal, where 
2,1.5α = , 1γ = , 100N = , GSNR 0=  dB and 0.1fP = . Note that we mainly compare the 

best detection probability, which corresponds to the vertex of each curve. When 2α = , the 
FLOM detector achieves its best performance at 2p = , and it reduces to the energy detector. 
The GKED detector shows the same detection probability as the energy detector. Although the 
DEF detector performs slightly worse than the other two detectors, it has much lower 
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computational complexity than the GKED detector and shows better performance than the 
FLOM detector when 2α < , as will be seen in the following simulation results. When 1.5α = , 
the DEF and GKED detectors exhibit the same best detection probability of 0.8, whereas the 
FLOM detector shows a lower best detection probability of 0.7. 

To observe the comparison for smaller values of characteristic exponent α , we reduced α  
from 2 and 1.5 to 1 and 0.5, respectively. The results are presented in Fig. 6. Except for α , the 
other conditions are the same as in Fig. 5. In terms of the best detection probabilities, the DEF 
detector performs better than the GKED and FLOM detectors regardless of whether 1α =  or 

0.5α = . From Figs. 5 and 6, the DEF detector performs slightly worse than the GKED 
detector when α  is larger than 1.5, but it has much lower computational complexity than the 
latter. However, the DEF detector performs better than the GKED detector when α  is smaller 
than 1.5. In addition, the DEF detector outperforms the FLOM detector for most values of α , 
except when α  is close to 2. 
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Fig. 7. ROC for the DEF, FLOM and GKED detectors in non-fading channels, where 1γ = , 

100N = , and GSNR 0=  dB. 
 

To compare the performance with different false alarm probabilities, the ROC curves of 
the DEF, FLOM and GKED detectors in non-fading channels are shown in Fig. 7, where 

2,1α = , 1γ = , 100N =  and GSNR 0=  dB. The best values of c  and p  can be determined 
from Figs. 5 and 6, and they are shown in the legend of the figure. When 2α = , the GKED 
detector has the same detection performance as the FLOM detector with 2p = , namely, the 
energy detector. The DEF detector performs slightly worse than the other two detectors. When 

1α = , the DEF detector always performs better than the GKED and FLOM detectors for 
different fP values. When 0.1fP = , the detection probabilities of the DEF, GKED and FLOM 
detectors are 0.87, 0.75 and 0.68, respectively; these results agree with those in Fig. 6. 
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Fig. 8. Detection probability versus GSNR for the DEF, FLOM and GKED detectors in non-fading 

channels, where 1a = , 1γ = , and 0.1fP = . 

 
Fig. 8 shows the detection probability versus GSNR for the DEF, FLOM and GKED 

detectors in non-fading channels, where 1α = , 1γ = , 0.1fP = . The best values of c  and p  
are adopted. From the comparison of the three detectors, we can see that the DEF detector 
always performs better than the other two detectors under different GSNR values. When the 
sample size increases from 100 to 400, the detection probability of the DEF detector increases 
substantially. This result indicates that we can collect more sample data to improve the 
detection performance when the signal power is very small. 
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Fig. 9. ROC for the DEF, FLOM and GKED detectors in Rayleigh fading channels, where 1a = , 

1γ = , 100N = , and GSNR 0=  dB. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018                                   283 

The performance comparison in Rayleigh fading channels is depicted in Fig. 9, where 
1α = , 1γ = , 100N =  and GSNR 0=  dB. From the comparative study between Figs. 7 and 9, 

the Rayleigh fading channel leads to serious performance degradation. However, the DEF 
detector still performs better than the GKED and FLOM detectors. 
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Fig. 10. Detection probability versus parameter c  or p  for the DEF, GKED and FLOM detectors, 

where 2,1.5a = , 1γ = , 200N = , GSNR 2= −  dB, and 0.1fP = . 

 
To test the performance of the DEF detector at a lower GSNR, an experiment was 

conducted, and the results are shown in Fig. 10. Compared with Fig. 5, the main difference in 
the simulation conditions is that the GSNR was decreased from 0 dB to -2 dB. In addition, in 
order to achieve an acceptable detection probability, the sample size was increased from 100 
to 200. After comparing the best detection probabilities corresponding to the vertex of each 
curve, we can see that the best detection probabilities of the FLOM and GKED detectors are 
nearly the same when 2α =  and slightly higher than that of the DEF detector. When 1.5α = , 
the DEF and GKED detectors achieve the same best detection probability and outperform the 
FLOM detector. This result is similar to that in Fig. 5. If the GSNR is decreased, we can expect 
that a similar simulation result will be obtained and the DEF detector will still perform well. 
However, we must collect more samples to achieve an acceptable detection probability when 
the GSNR decreases. This necessity leads to higher computational complexity, especially for 
the GKED detector. 
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Fig. 11. ROC of the DEF detector with noise uncertainty, where 1.5a = , 1γ = , 200N = , 

GSNR 2= −  dB, and 1c = . 
 

Fig. 11 presents the effect of the noise uncertainty on the performance of the DEF detector. 
The noise uncertainty can be modeled using a random variable β , which is uniformly 
distributed in the interval [ , ]B B− . Here, β  is the logarithmic function of the noise 
uncertainty coefficient ρ , namely, 1010logβ ρ=  [20, 21, 22]. From the figure, the detection 
probability decreases when the degree of the uncertainty increases. For example, when 

0.1fP =  and B  increases from 0 dB to 2 dB by increments of 0.5 dB, the corresponding 
detection probabilities are 0.79, 0.7, 0.52 and 0.3, respectively, which shows serious 
degradation. 

5. Conclusion 
In this paper, we investigated the signal detection in impulsive noise modeled using an 

S Sα  distribution. A detector based on the DEF was proposed. The performance analysis and 
simulation results indicate that the DEF detector could achieve good performance with low 
computational complexity. The DEF detector exhibited a much lower computational 
complexity than the GKED detector and performed better than the latter for small values of α  
in the S Sα  noise. Unlike the GKED detector, the DEF detector could successfully detect the 
primary signal of the DC level. At the same order of magnitude for the computational 
complexity, the DEF detector performed much better than the FLOM detector for most values 
of α  in the S Sα  noise. Due to its low computational complexity and good performance, the 
DEF detector is a good method for signal detection in S Sα  noise. 
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