• Title/Summary/Keyword: Node Search

Search Result 356, Processing Time 0.027 seconds

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Path Optimize Research used Ray-Tracing Algorithm in Heuristic-based Genetic Algorithm Pathfinding (휴리스틱 유전 알고리즘 경로 탐색에 광선 추적 알고리즘을 활용한 경로 최적화 연구)

  • Ko, Jung-Woon;Lee, Dong-Yeop
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.83-90
    • /
    • 2019
  • Heuristic based Genetic Algorithm Pathfinding(H-GAP), a method without the need for node and edge information, can compensate the disadvantages of existing pathfinding algorithm, and perform the path search at high speed. However, because the pathfinding by H-GAP is non-node-based, it may not be an optimal path when it includes unnecessary path information. In this paper, we propose an algorithm to optimize the search path using H-GAP. The proposed algorithm optimizes the path by removing unnecessary path information through ray-tracing algorithm after the H-GAP path search is completed.

ValueRank: Keyword Search of Object Summaries Considering Values

  • Zhi, Cai;Xu, Lan;Xing, Su;Kun, Lang;Yang, Cao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5888-5903
    • /
    • 2019
  • The Relational ranking method applies authority-based ranking in relational dataset that can be modeled as graphs considering also their tuples' values. Authority directions from tuples that contain the given keywords and transfer to their corresponding neighboring nodes in accordance with their values and semantic connections. From our previous work, ObjectRank extends to ValueRank that also takes into account the value of tuples in authority transfer flows. In a maked difference from ObjectRank, which only considers authority flows through relationships, it is only valid in the bibliographic databases e.g. DBLP dataset, ValueRank facilitates the estimation of importance for any databases, e.g. trading databases, etc. A relational keyword search paradigm Object Summary (denote as OS) is proposed recently, given a set of keywords, a group of Object Summaries as its query result. An OS is a multilevel-tree data structure, in which node (namely the tuple with keywords) is OS's root node, and the surrounding nodes are the summary of all data on the graph. But, some of these trees have a very large in total number of tuples, size-l OSs are the OS snippets, have also been investigated using ValueRank.We evaluated the real bibliographical dataset and Microsoft business databases to verify of our proposed approach.

Embedded Node Cache Management for Hybrid Storage Systems (하이브리드 저장 시스템을 위한 내장형 노드 캐시 관리)

  • Byun, Si-Woo;Hur, Moon-Haeng;Roh, Chang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.157-159
    • /
    • 2007
  • The conventional hard disk has been the dominant database storage system for over 25 years. Recently, hybrid systems which incorporate the advantages of flash memory into the conventional hard disks are considered to be the next dominant storage systems to support databases for desktops and server computers. Their features are satisfying the requirements like enhanced data I/O, energy consumption and reduced boot time, and they are sufficient to hybrid storage systems as major database storages. However, we need to improve traditional index node management schemes based on B-Tree due to the relatively slow characteristics of hard disk operations, as compared to flash memory. In order to achieve this goal, we propose a new index node management scheme called FNC-Tree. FNC-Tree-based index node management enhanced search and update performance by caching data objects in unused free area of flash leaf nodes to reduce slow hard disk I/Os in index access processes.

  • PDF

A Study on A* Algorithm Applying Reversed Direction Method for High Accuracy of the Shortest Path Searching (A* 알고리즘의 최단경로 탐색 정확도 향상을 위한 역방향 적용방법에 관한 연구)

  • Ryu, Yeong-Geun;Park, Yongjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • The studies on the shortest path algorithms based on Dijkstra algorithm has been done continuously to decrease the time for searching. $A^*$ algorithm is the most represented one. Although fast searching speed is the major point of $A^*$ algorithm, there are high rates of failing in search of the shortest path, because of complex and irregular networks. The failure of the search means that it either did not find the target node, or found the shortest path, witch is not true. This study proposed $A^*$ algorithm applying method that can reduce searching failure rates, preferentially organizing the relations between the starting node and the targeting node, and appling it in reverse according to the organized path. This proposed method may not build exactly the shortest path, but the entire failure in search of th path would not occur. Following the developed algorithm tested in a real complex networks, it revealed that this algorithm increases the amount of time than the usual $A^*$ algorithm, but the accuracy rates of the shortest paths built is very high.

Optimal Fault-Tolerant Resource Placement in Parallel and Distributed Systems (병렬 및 분산 시스템에서의 최적 고장 허용 자원 배치)

  • Kim, Jong-Hoon;Lee, Cheol-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.608-618
    • /
    • 2000
  • We consider the problem of placing resources in a distributed computing system so that certain performance requirements may be met while minimizing the number of required resource copies, irrespective of node or link failures. To meet the requirements for high performance and high availability, minimum number of resource copies should be placed in such a way that each node has at least two copies on the node or its neighbor nodes. This is called the fault-tolerant resource placement problem in this paper. The structure of a parallel or a distributed computing system is represented by a graph. The fault-tolerant placement problem is first transformed into the problem of finding the smallest fault-tolerant dominating set in a graph. The dominating set problem is known to be NP-complete. In this paper, searching for the smallest fault-tolerant dominating set is formulated as a state-space search problem, which is then solved optimally with the well-known A* algorithm. To speed up the search, we derive heuristic information by analyzing the properties of fault-tolerant dominating sets. Some experimental results on various regular and random graphs show that the search time can be reduced dramatically using the heuristic information.

  • PDF

Adaptive Link Recovery Period Determination Algorithm for Structured Peer-to-peer Networks (구조화된 Peer-to-Peer 네트워크를 위한 적응적 링크 복구 주기 결정 알고리듬)

  • Kim, Seok-Hyun;Kim, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • Structured P2P (peer-to-peer) networks have received much attention in research communities and the industry. The data stored in structured P2P networks can be located in a log-scale time without using central severs. The link-structure of structured P2P networks should be maintained for keeping log-scale search performance of it. When nodes join or leave structured P2P networks frequently, some links become unavailable and search performance is degraded by these links. To sustain search performance of structured P2P networks, periodic link recovery scheme is generally used. However, when the link recovery period is short or long compared with node join and leave rates, it is possible that sufficient number of links are not restored or excessive messages are used after the link-structure is restored. We propose the adaptive link recovery determination algorithm to maintain the link-structure of structured P2P networks when the rates of node joining and leaving are changed dynamically. The simulation results show that the proposed algorithm can maintain similar QoS under various node leaving rates.

PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems (PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구)

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems (배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현)

  • Mun Kyeong-Jun;Song Myoung-Kee;Kim Hyung-Su;Kim Chul-Hong;Park June Ho;Lee Hwa-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.