• Title/Summary/Keyword: Nodal

Search Result 1,237, Processing Time 0.03 seconds

Analysis on the Estimation Error of the Lowest and Highest Astronomical Tides using the Wido Tidal Elevation Data (위도 검조자료를 이용한 최저-최고 천문조위 추정 오차 분석)

  • Jeong, Shin Taek;Yoon, Jong Tae;Cho, Hongyeon;Ko, Dong Hui;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • In designing of the wind power facilities, the highest and lowest astronomical tides (HAT and LAT) are needed in terms of an international design tidal water levels. The AHHW and ALLW, however, have been used as the design tidal levels in Korea. The HAT and LAT in the Wido coastal sea should be estimated to satisfy the standard because the pilot wind power facilities will be located in the adjacent Wido coastal sea. In this study, the HAT and LAT are estimated using the 31-years hourly tidal elevation data of the Wido tidal gauging station and the nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$, are analysed to check the expected long-term lunar cycle, i.e., 18.61-year's nodal variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, show 40 cm greater than AHHW and 35 cm lower than ALLW, respectively.

Nodal Outcomes of Uniportal versus Multiportal Video-Assisted Thoracoscopic Surgery for Clinical Stage I Lung Cancer

  • Choi, Jung Suk;Lee, Jiyun;Moon, Young Kyu;Moon, Seok Whan;Park, Jae Kil;Moon, Mi Hyoung
    • Journal of Chest Surgery
    • /
    • v.53 no.3
    • /
    • pp.104-113
    • /
    • 2020
  • Background: Accurate intraoperative assessment of mediastinal lymph nodes is a critical aspect of lung cancer surgery. The efficacy and potential for upstaging implicit in these dissections must therefore be revisited in the current era of uniportal video-assisted thoracoscopic surgery (VATS). Methods: A retrospective study was conducted in which 544 patients with stage I (T1abc-T2a, N0, M0) primary lung cancer were analyzed. To assess risk factors for nodal upstaging and to limit any imbalance imposed by surgical choices, we constructed an inverse probability of treatment-weighted (IPTW) logistic regression model (in addition to non-weighted logistic models). We also evaluated risk factors for early locoregional recurrence using IPTW logistic regression analysis. Results: In the comparison of uniportal and multiportal VATS, the resected lymph node count (14.03±8.02 vs. 14.41±7.41, respectively; p=0.48) and rate of nodal upstaging (6.5% vs. 8.7%, respectively; p=0.51) appeared similar. Predictors of nodal upstaging included tumor size (odds ratio [OR], 1.74; 95% confidence interval [CI], 1.12-2.70), carcinoembryonic antigen level (OR, 1.11; 95% CI, 1.04-1.18), and histologically confirmed pleural invasion (OR, 3.97; 95% CI, 1.89-8.34). The risk factors for locoregional recurrence within 1 year were found to be number of resected N2 nodes, age, and nodal upstaging. Conclusion: Uniportal and multiportal VATS appear similar with regard to accuracy and thoroughness, showing no significant difference in the extent of nodal dissection.

Two-Stage Model for Security Network-Constrained Market Auction in Pool-Based Electricity Market

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2196-2207
    • /
    • 2017
  • This paper presents a two-stage market auction model in a pool-based electricity market, which explicitly takes into account the system network security. The security network-constrained market auction model considers the use of corrective control to yield economically efficient actions in the post-contingency state, while ensuring a certain security level. Under this framework, the proposed model shows not only for quantifying the correlation between secure system operation and efficient market operation, but also for providing transparent information on the pricing system security for market participants. The two-stage market auction procedure is formulated using Benders decomposition (BD). In the first stage, the market participants bid in the market for maximizing their profit, and the independent system operator (ISO) clears the market based on social welfare maximization. System network constraints incorporating post-contingency control actions are described in the second stage of the market auction procedure. The market solutions, along with the BD, yield nodal spot prices (NSPs) and nodal congestion prices (NCPs) as byproducts of the proposed two-stage market auction model. Two benchmark systems are used to test and demonstrate the effectiveness of the proposed model.

Customer Nodal Cost Calculation considering Power Quality (전력품질을 고려한 수용가 모선 가격 계산)

  • Jeong, Sung-Won;Park, In-Duck;Gim, Jae-Hyeon;Lee, Geun-Joon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2007
  • This paper measures power quality of bus in case electric charges about customer are imposed by each bus, supposed that can calculate this cost. When reflected this in system planning, expected cost proposed following method through sample system. To calculate nodal cost operating condition of power equipment calculates nodal cost[$/MVAH] supposing by situation that is optimized by OPF(optimal power flow) in system. The damage cost that is shed by fault that happen during year of loads in system that is linked on each bus was produced. As a result, proposed method was very effective in case of calculating bus total cost including power quality cost.

Design of RC T-type Pier Coping Using Strut-and-Tie Model (스트럿-타이 모델에 의한 콘크리트 T형 교각 코핑부의 설계)

  • Jung, Kwang-Hoe;Shim, Byul;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.617-622
    • /
    • 2000
  • In this study, effective compressive strength and nodal zone of Strut-and-Tie Model are studied to propose a new design method for RC T-type pier coping for prevention of sudden brittle failure. The coping which transmits loads of bridge to pier should be properly designed to retain ductile behavior. In order to carry out this proper design using STM, tie must yield before concrete fails, and a stress at strut should not exceed a certain effective stress. Therefore, reasonable determination of the effective compressive strength of strut by considering stress states at the nodal zone exactly is very important. Since conventional STM is applied under assumption that all nodes are under hydrostatic stress state, actual non-hydrostatic stress state in nodal zone caused by geometrical characteristics, loading conditions, support conditions of structures can not be considered properly. In order to apply STM for design of RC T-type pier coping, the non-hydrostatic stress state of nodal zone is considered and effective compressive strength is proposed. Then, a new design method of RC T-type pier coping which applies the principle of superposition to obtain optimum ductile behavior is rationally designed.

  • PDF

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

A Three-Dimensional Nodal Diffusion Code Based on the AFEN Methodology (해석함수전개 노달방법에 기초한 3차원 노달확산 코드)

  • Hong, Ser-Gi;Cho, Nam-Zin;Noh, Jae-Man
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.870-876
    • /
    • 1995
  • In this paper, a new three-dimensional nodal diffusion code which is based on the AFEN methodology is described and tested. The method expands the homogeneous flux within a node in ter-ms of eighteen analytic basis functions satisfying the diffusion equation at any point of the node. And the nodal coupling equations are derived such that nodal balance, current continuity and leakage balance within an infinitesimally small box around the edge are satisfied. To verify its accuracy, the code was applied to the well-known static LMW benchmark problem and a small core benchmark problem that has the same material properties as the three-dimensional IAEA benchmark problem and compared with two other codes (QUANDRY, VENTURE). The results show that the code provides good accuracy both in the power distribution and in the effective multiplication factor.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.