DOI QR코드

DOI QR Code

Analysis on the Estimation Error of the Lowest and Highest Astronomical Tides using the Wido Tidal Elevation Data

위도 검조자료를 이용한 최저-최고 천문조위 추정 오차 분석

  • 정신택 (원광대학교 토목환경공학과) ;
  • 윤종태 (경성대학교 토목공학과) ;
  • 조홍연 (한국해양과학기술원 연안공학연구본부) ;
  • 고동휘 ((주)해풍기술) ;
  • 강금석 (한국전력공사 전력연구원)
  • Received : 2016.01.21
  • Accepted : 2016.04.25
  • Published : 2016.04.30

Abstract

In designing of the wind power facilities, the highest and lowest astronomical tides (HAT and LAT) are needed in terms of an international design tidal water levels. The AHHW and ALLW, however, have been used as the design tidal levels in Korea. The HAT and LAT in the Wido coastal sea should be estimated to satisfy the standard because the pilot wind power facilities will be located in the adjacent Wido coastal sea. In this study, the HAT and LAT are estimated using the 31-years hourly tidal elevation data of the Wido tidal gauging station and the nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$, are analysed to check the expected long-term lunar cycle, i.e., 18.61-year's nodal variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, show 40 cm greater than AHHW and 35 cm lower than ALLW, respectively.

해상풍력 발전시설은 국제적인 설계기준조위로 최고천문조위(highest astronomical tide, HAT)와 최저천문조위(lowest astronomical tide, LAT) 기준을 요구하고 있다. 우리나라는 설계기준조위로 약최고고조위(AHHW)와 약최저저조위(ALLW) 기준을 사용하여 왔기 때문에 국제적인 설계기준을 만족하기 위해서는 해상풍력 발전시설 후보 해역인 위도에서의 HAT, LAT 추정이 필요하다. 본 연구에서는 위도에서 가용한 31년 조위자료를 이용하여 HAT, LAT 기준조위를 추정하였으며, 추정에 사용한 자료의 신뢰수준을 검토하기 위하여 장기 태음분조에 해당하는 18.61년 주기의 Nodal 변동 특성 분석을 수행하였다. Nodal 보정을 고려하지 않은 연간 $M_2$, $O_1$, $K_1$ 분조의 진폭변화는 뚜렷한 18.61년 주기를 보여 조화분석 결과가 적절하게 추정된 것으로 파악되고 있는 것으로 파악되었다. 한편 조위자료를 이용하여 추정한 HAT, LAT 신뢰구간의 상한 및 하한으로 최종 추정한 HAT, LAT 조위는 AHHW, ALLW 기준조위에 비하여 각각 +40 cm, -35 cm 정도로 파악되었다.

Keywords

References

  1. Byun, D.-S. and C.-W. Cho, (2009). Exploring conventional tidal prediction schemes for improved coastal numerical forecast modeling, Ocean Modelling 28, 193-202. https://doi.org/10.1016/j.ocemod.2009.02.001
  2. Korea Hydrographic and Oceanographic Administration (2012). Final Report on the re-consideration of the setup of the tidal data treatment system and the reference datum level, (in Korean).
  3. Cho, H.Y., Ko, D.H. and Jeong, S.T. (2011). Missing pattern of the tidal elevation data in Korean coasts. Journal of Korean Society of Coastal and Ocean Engineers, 23(6), 496-501 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.6.496
  4. Feng, X., M.N. Tsimplis, and P.L. Woodworth (2015), Nodal variations and long-term changes in the main tides on the coasts of China, J. Geophys. Res. Oceans, 120, 1215-1232.
  5. FIG(International Federation of Surveyors) (2006). FIG Guide on the Development of a Vertical Reference Surface for Hydrography.
  6. Foreman, M.G.G. and Neufeld, E.T. (1991). Harmonic tidal analyses of long time series. International Hydrographic Review 68(1), 85-108.
  7. Gill, S.K. and J.R. Schultz. (2001). Tidal Datums and Their Applications, NOAA Special Publication NOS CO-OPS 1.
  8. Godin, G. (1991). The analysis of tides and currents. In:Parker, B.B (Ed.), Tidal Hydrodynamics. Wiley, New York, 675-709.
  9. Haigh, I.D., M. Eliot, and C. Pattiaratchi (2011), Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels, J. Geophys. Res., 116, C06025, doi:10.1029/2010JC006645.
  10. Hansen, J.M.; Aagaard, T., and Kuijpers, A., (2015). Sea-level forcing by synchronization of 56- and 74-year oscillations with the Moon's nodal tide on the northwest European Shelf (eastern North Sea to central Baltic Sea). Journal of Coastal Research, 31(5), 1041-1056.
  11. Houston, J.R., and Dean, R.G. (2011). Accounting for the nodal tide to improve estimates of sea level acceleration. Journal of Coastal Research, 27(5), 801-807.
  12. ICSM(Intergovernmental Committee on Surveying and Mapping) Permanent Committee on Tides and Mean Sea Level. (2011). Australian Tides Manual SP9 V4.1.
  13. IEC (2009). IEC 61400-3: Wind turbines-Part 3: Design requirements for offshore wind turbines.
  14. Ministry of Maritime Affairs and Fisheries (2014). Harbor and fishery design criteria (in Korean).
  15. Murray, M.T. (1964). A general method for the analysis of hourly heights of the tide. International Hydrographic Review, 41(2), 91-101.
  16. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  17. Pugh, D. (2004). Changing Sea Levels: effects of tides, weather and climate, Cambridge University Press.
  18. Pugh, D. and P. Woodworth. (2014). Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, Cambridge University Press.
  19. Slobbe, D. C., R. Klees, M. Verlaan, L. L. Dorst and H. Gerristen. (2013). Lowest Astronomical Tide in the North Sea Derived from a Vertically Referenced Shallow Water Model, Marine Geodesy, 36(1), 31-71. https://doi.org/10.1080/01490419.2012.743493
  20. Turner. J. F., J. C. Iliffe, M. K. Ziebart and C. Jones. (2013). Global Ocean Tide Models: Assessment and Use within a Surface Model of Lowest Astronomical Tide. Marine Geodesy, 36(2), 123-137 https://doi.org/10.1080/01490419.2013.771717

Cited by

  1. Analysis on the estimation errors of the lowest and highest astronomical tides for the southwestern 2.5 GW offshore wind farm, Korea 2017, https://doi.org/10.1016/j.ijnaoe.2017.03.004
  2. Analysis on the Emersion and Submersion Patterns of the Coastal Zone in Korea vol.28, pp.5, 2016, https://doi.org/10.9765/KSCOE.2016.28.5.312