• Title/Summary/Keyword: No overshoot

Search Result 83, Processing Time 0.028 seconds

A Position Control of Brushless DC Motor for Power Installation with Binary Control (바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어)

  • 유완식;조규민;김영석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

Asymptotically stable tracking control of mobile robots (이동로보트의 점근적으로 안정한 추종제어)

  • 김도현;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.187-190
    • /
    • 1997
  • In the past few years, many researchers are interesting of control of mobile robot with nonholonomic constraints. And tracking problems is important as well as regulation in nonholonomic system control. Some researchers have investigated the stable tracking control law for mobile robot. But, few results showed the globally asymptotically stable control method simply. So, we address the design of globally asymptotically stable tracking control law for mobile robot with nonholonomic velocity constraints using simple method. The stabilizability of the controller is derived by Lyapunov direct method. And we analyze the system responses according to the variation of control parameters in line tracking problem. It is derived that the responses represent no overshoot property in line tracking. Examples are two-wheeled mobile robot and car-like mobile robot and the simulation results represent the effectiveness of our method.

  • PDF

Internal Model Control of UPS Inverter using Resonance Model

  • Park J. H.;Kim D. W.;Kim J. K.;Lee H. W.;Noh T. K.;Woo J. I.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.184-188
    • /
    • 2001
  • In this paper, a new fully digital control method for single-phase UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. The inner current control loop is designed and implemented in the form of internal model control and takes the presence of computational time-delay into account. Therefore, this method provides an overshoot-free reference-to-output response. In the proposed scheme, the outer voltage control loop employing P controller with resonance model implemented by a DSP is introduced. The proposed resonance model has an infinite gain at resonant frequency, and it exhibits a function similar to an integrator for AC component. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been demonstrated by the simulation and experimental results respectively.

  • PDF

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

A Pulsed Mode Operating DC Power Supply Based on Modified Multilevel Converter (Modified 멀티레벨 컨버터 기반 펄스모드 동작 직류전원장치)

  • Ahn J.S.;Nho E.C.;Kim I.D.;Kim H.G.;Chun T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.264-268
    • /
    • 2003
  • This paper describes a high voltage high power DC power supply which has the ability of pulsed mode operation. The power supply Is constructed with several series connected power converters based on modified multilevel converters. The modified multilevel converters are suitable for the protection of frequent output short-circuit. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the do voltage because the dc output capacitors keep undischarged state. Analysis, simulations, and experiments are carried out to Investigate the operation and usefulness of the proposed scheme.

  • PDF

Speed Control of Induction Motor Using Anti-windup Integral-Proportional Controller (반포화 적분-비례제어기를 이용한 유도전동기의 속도제어)

  • 정재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.215-218
    • /
    • 2000
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and the plant input is limited. An anti-windup integral -proportional(IP) controller is proposed for the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage source inverter(VSI). Although the operating conditions like motor load and speed command is changed under the limited plant input it is experimentally verified that the speed response has much improved performance such as no overshoot and fast settling time and the maximum plant input is also effectively utilized.

  • PDF

LMI fuzzy based sliding mode control for DC-DC converter (DC-DC 컨버터의 LMI기반 슬라이딩 모드 제어기 설계)

  • Wang, FaGuang;Park, Seung-Kyu;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1727_1728
    • /
    • 2009
  • Nowadays DC-DC converter has been used widely in electronic production. It has a high requirement in wide input voltage, load variations, stability, providing a fast transient response and lower overshoot. However, it is not easy to be controlled because of its nonlinearity. In this paper, the nonlinear model of DC-DC converter is approximatedby four linear models and sub-controllers are designed by using the LMI guaranteeing the stability of the sub-systems at the same time. For the robust of the control system, an integral sliding mode control (ISMC) is applied together with LMI fuzzy controller. The proposed controller supports a fast and almost no overshooting transient response for the DC-DC converter control.

  • PDF

A Study on a Intelligence Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구)

  • 김현식;황수복;신용구;최중락
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

Tuning-free Anti-windup Strategy for High Performance Induction Machine Drives (고성능 유도전동기 구동을 위한 자동 튜닝 Anti-windup 기법)

  • Seok Jul-Ki;Bae Sang-Gyu;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.312-315
    • /
    • 2004
  • This paper presents a tuning-free conditional integration anti-windup strategy for induction machine with Proportional-Integral (PI) type speed controller. The on/off condition of integral action is determined by the frequency domain analysis of machine torque command without a prior knowledge of set-point changes. There are no tuning parameters to be selected by users for anti-windup scheme. In addition, the dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time even in the change of operating conditions. This algorithm is useful in many high performance induction machine applications not to allow the oscillation and overshoot of speed/torque responses. The main idea can be extended to general applications such as chemical processes and industrial robots.

  • PDF

Ac Servo motor position control using Sliding mode control (슬라이딩 모우드(Sliding Mode) 제어(制御)에 의한 AC Servo motor의 위치제어(位値制御)에 관한 연구(硏究))

  • Hong, Chang-Hi;Lee, Hyoung-Ki;Park, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.53-55
    • /
    • 1988
  • The application of Sliding Mode Control for inproving the dynamic response of a Multi-Phase-Bipolar (MPB) Brushless DC motor based position Brushless DC motor system is presented. Sliding Mode Control gives fast dynamic response with no overshoot and zero steady state error. It has the important feature of bins highly robust. A design procedure is outlined for the Sliding Mode Controller for a MPB Brushless DC motor. Digital computer simulation of the overall position control system is carried out using a time domain model in the d-q reference frame.

  • PDF