• 제목/요약/키워드: Next-generation displays

검색결과 89건 처리시간 0.03초

유기 박막의 EL특성 (Electroluminescent Characteristics of Organic Thin Films)

  • 송진원;최용성;이경섭
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.178-182
    • /
    • 2007
  • Electroluminescent (EL) devices based on organic thin films are considered to be one of the next generation of flat-panel displays. In this paper, we have investigated electro-luminescent (EL) characteristics of organic EL device using $Alq_{3}$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

Analysis and Improvement of Reliability in IGZO TFT for Next Generation Display

  • Fujii, Mami;Fuyuki, Takashi;Jung, Ji-Sim;Kwon, Jang-Yeon;Uraoka, Yukiharu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.326-329
    • /
    • 2009
  • We investigated the degradation of $In_2O_3-Ga_2O_3$-ZnO (IGZO) thin-film transistors (TFTs), which is promising device for driving circuits of nextgeneration displays. We performed the electronic stress test by applying gate and drain voltage. We discussed the degradation mechanism by thermal analysis and device simulation.

  • PDF

Advances in White OLED Tandem Architecture for Next Generation AMOLED Displays

  • Hatwar, T.K.;Spindler, J.P.;Vargas, J.R.;Helber, M.;Klubek, K.;Begley, W.;Itoh, M.;Hamer, J.;VanSlyke, S.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.231-234
    • /
    • 2007
  • Advances in white OLED tandem architecture are discussed.With these structures, stable and low-power full color AMOLED displays can be fabricated that are anticipated to be suitable for large area applications such as TVs. With a tandem architecture, efficient (24 cd/A) OLED structures with exceptional stability (${\sim}100,000\;h$ at $1000\;cd/m^2$) are described. In addition, excellent color gamut (>100% NTSC) can be attained by incorporating advanced color filters into the AMOLED backplane in a typical bottom-emitting configuration.

  • PDF

Diffractive Alignment of Dual Display Panels

  • Shin-Woong Park;Junghwan Park;Hwi Kim
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.72-79
    • /
    • 2024
  • Recent flat-panel displays have become increasingly complicated to facilitate multiple display functions. In particular, the form of multilayered architectures for next-generation displays makes precise three-dimensional alignment of multiple panels a challenge. In this paper, a diffractive optical alignment marker is proposed to address the problem of three-dimensional alignment of distant dual panels beyond the depth-of-focus of a vision camera. The diffractive marker is effective to analyze the positional correlation of distant dual panels. The possibility of diffractive alignment in multilayer display fabrication is testified with numerical simulation and a proof-of-concept experiment.

반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향 (Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging)

  • 엄용성;최광성;최광문;장기석;주지호;이찬미;문석환;문종태
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

AGB (Ancestral Genome Browser): 조상유전체 데이터의 시각적 열람을 위한 웹 인터페이스 (AGB (Ancestral Genome Browser): A Web Interface for Browsing Reconstructed Ancestral Genomes)

  • 이대환;이종인;홍운영;장은지;김재범
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1584-1589
    • /
    • 2015
  • 차세대 시퀀싱(Next generation sequencing) 기술의 발달로 여러 생물 종의 유전체 데이터를 다양한 관점에서 비교 분석한 결과를 직관적으로 해석할 수 있게 해 주는 다양한 유전체 브라우저(Genome browser)들이 활발하게 서비스되고 있다. 그러나 기존 유전체 브라우저들은 현존 생물 종의 유전체 데이터에 국한되어 있기 때문에 생물의 진화 현상에 주목하는 연구자들의 수요를 충족시키지 못하고 있다. 본 논문에서는 현존 생물 종의 유전체 데이터를 이용하여 복원된 조상 유전체 정보를 열람할 수 있게 해주는 유전체 브라우저인 AGB (Ancestral Genome Browser)를 소개한다. AGB를 이용하면 진화 과정 중에서 발생한 유전체 변이 현상을 직관적으로 빠르게 추적할 수 있다. AGB는 현재 http://bioinfo.konkuk.ac.kr/genomebrowser/에서 이용 가능하다.

TV용 차세대 디스플레이의 지배적 디자인 예측을 위한 소비자 선호속성 분석 : 컨조인트 분석의 활용 (An Analysis of Consumer Preferences for Forecasting a Dominant Design of the Next Generation TV Display Technology: A Conjoint Analysis)

  • 이민우;지일용
    • 한국콘텐츠학회논문지
    • /
    • 제19권6호
    • /
    • pp.663-675
    • /
    • 2019
  • 최근 10여 년간 디스플레이 시장에서의 지배적 디자인은 LCD로 한국 업체들이 이를 주도해 왔다. 그러나 최근 중국 기업들로부터의 위협이 증가되고 있어, 국내 업체들은 차세대 디스플레이 분야로 진출하기 위한 노력을 기울이고 있다. 한국 디스플레이 업체들은 최근 양자점 디스플레이 및 유기발광디스플레이 등의 신기술을 출시하여, 특히 TV용 차세대 디스플레이 시장에서 지배적 디자인을 차지하기 위한 표준 경쟁에 돌입하였다. 지배적 디자인을 결정하는 요소는 다양한 가운데, 디스플레이 제품은 특히 제품 자체의 기술적 속성이 가장 중요할 것으로 예상된다. 따라서 본 연구에서는 TV용 차세대 디스플레이에 대한 소비자의 선호 속성을 파악함으로써, 이 분야 표준 경쟁을 위한 시사점을 제공하고자 한다. 이를 위해 본 연구에서는 잠재적 소비자들을 대상으로 한 컨조인트 분석을 실시하였다. 분석 결과, 초고해상도 화면에 자연스런 색상을 표현할 수 있는 내구성 높은 제품에 대한 선호도가 높은 가운데, 제품의 가격이 중요한 요소로 작용하는 것으로 나타났다.

Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review

  • Raja, Jayapal;Jang, Kyungsoo;Nguyen, Cam Phu Thi;Yi, Junsin;Balaji, Nagarajan;Hussain, Shahzada Qamar;Chatterjee, Somenath
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.234-240
    • /
    • 2015
  • Amorphous oxide-based thin-film transistors (TFTs) have drawn a lot of attention recently for the next-generation high-resolution display industry. The required field-effect mobility of oxide-based TFTs has been increasing rapidly to meet the demands of the high-resolution, large panel size and 3D displays in the market. In this regard, the current status and major trends in the high mobility oxide-based TFTs are briefly reviewed. The various approaches, including the use of semiconductor, dielectric, electrode materials and the corresponding device structures for realizing high mobility oxide-based TFT devices are discussed.

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • 김도일;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • 신새영;문연건;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF