• Title/Summary/Keyword: Next Generation Power Semiconductor

Search Result 55, Processing Time 0.029 seconds

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

Trends of Power Semiconductor Device (전력 반도체의 개발 동향)

  • Yun, Chong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-6
    • /
    • 2004
  • Power semiconductor devices are being compact, high performance and intelligent thanks to recent remarkable developments of silicon design, process and related packaging technologies. Developments of MOS-gate transistors such as MOSFET and IGBT are dominant thanks to their advantages on high speed operation. In conjunction with package technology, silicon technologies such as trench, charge balance and NPT will support future power semiconductors. In addition, wide band gap material such as SiC and GaN are being studies for next generation power semiconductor devices.

  • PDF

Magnetic Micro-Deflector for a Microcolumn System (초소형 전자칼럼을 위한 마이크로 자기장 디플렉터 연구)

  • Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Kim, Ho-Seob;Park, Seong-Soon;Park, Kyoung-Wan;Hwang, Nam-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • We have fabricated a magnetic micro-deflector for a microcolumn system and tested its performance by operating it in the low energy region. The micro-deflector is composed of Cu coils around cylindrical cores with $500{\mu}m$ diameter. The diameter of the Cu coil itself is $100{\mu}m$. Two pairs of deflectors designed for a 2-dimensional scan, that is X and Y deflection, are fixed on an insulating plate. The low power performance of a magnetic micro-deflector attached to a microcolumn system has been tested and the magnitude of deflection is measured to be ${\sim}100{\mu}m/A$, which offers the possibility for practical applications of the magnetic micro-deflector.

Power Amplifiers and Transmitters for Next Generation Mobile Handsets

  • Choi, Jin-Sung;Kang, Dae-Hyun;Kim, Dong-Su;Park, Jung-Min;Jin, Bo-Shi;Kim, Bum-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • As a wireless handset deals with multiple application standards concurrently, RF transmitters and power amplifiers are required to be more power efficient and reconfigurable. In this paper, we review the recent advances in the design of the power amplifiers and transmitters. Then, the systematic design approaches to improve the performance with the digital baseband signal processing are introduced for the next generation mobile handset.

Commercialization and Research Trends of Next Generation Power Devices SiC/GaN (차세대 파워디바이스 SiC/GaN의 산업화 및 학술연구동향)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.58-81
    • /
    • 2013
  • Recently, the technological progress in manufacturing power devices based on wide bandgap materials, for example, silicon carbide(SiC) or gallium nitride(GaN), has resulted in a significant improvement of the operating-voltage range and switching speed and/or specific on resistance compared with silicon power devices. This paper will give an overview of the status on The Next generation Power Devices such as SiC/GaN with a focus on commercialization and research.

Giga WDM-PON based on ASE Injection R-SOA (ASE 주입형 R-SOA 기반 기가급 WDM-PON 연구)

  • Shin Hong-Seok;Hyun Yoo-Jeong;Lee Kyung-Woo;Park Sung-Bum;Shin Dong-Jae;Jung Dae-Kwang;Kim Seung-Woo;Yun In-Kuk;Lee Jeong-Seok;Oh Yun-Je;Park Jin-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.35-44
    • /
    • 2006
  • Reflective semiconductor optical amplifiers(R-SOAs) were designed with high gain, wide optical bandwidth, high thermal reliability and wide modulation bandwidth in TO-can package for the transmitter of wavelength division multiplexed-passive optical network(WDM-PON) application. Double trench structure and current block layer were introduced in designing the active layer of R-SOA to enable high speed modulation. The injection power requirement and the viable temperature range of WDM-PON system are experimentally analysed in based on Amplified Spontaneous Emission(ASE)-injected R-SOAs. The effect of the different injection spectrum in the gain-saturated R-SOA was experimentally characterized based on the measurements of excessive intensity noise, Q factor, and BER. The proposed spectral pre-composition method reduces the bandwidth of injection source below the AWG bandwidth and thereby avoids spectrum distortion impeding the intensity noise reduction originated from the amplitude squeezing.

The Switching Characteristic and Efficiency of New Generation SiC MOSFET (차세대 전력반도체 SiC MOSFET의 스위칭 특성 및 효율에 관한 연구)

  • Choi, Won-mook;Ahn, Ho-gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.353-360
    • /
    • 2017
  • Recently, due to physical limitation of Si based power semiconductor, development speed of switching power semiconductors is falling and it is difficult to expect any further performance improvements. SiC based power semiconductor with superior characteristic than Si-based power semiconductor have been developed to overcome these limitations. however, there is not method to apply for real system. Therefore, suggested the feasibility and solution for SiC-based power semiconductor system. design to 1kW class DC-DC boost converter and demonstrated the superiority of SiC MOSFET under the same operating conditions by analyzing switching frequency, duty ratio, voltage and current, and comparing with Si based power semiconductor through experimental efficiency according to each system load. The SiC MOSFET has high efficiency and fast switching speed, and can be designed with small inductors and capacitors which has the advantage of volume reduction of the entire system.

Speed control of an IPMSM using multilevel inverters based on next generation high speed railway system (멀티레벨 인버터를 적용한 차세대 고속전철 구동용 IPMSM의 속도 제어)

  • Kwon, Soon-Hwan;Jin, Kang-Hwan;Park, Dong-Kyu;Li, Wei;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1473-1479
    • /
    • 2011
  • In this paper, speed control of IPMSM drives for the next generation domestic high speed railway system using multilevel inverter is presented. Multilevel inverter is suitable for the high-voltage high-capacity motor drive system because noise and switching frequency of power semiconductor devices is reduced. For the speed control of IPMSM using multilevel inverter, maximum torque control is applied in a constant torque region, and field weakening control is applied in a constant power region. Simulation programs based on Matlab/Simulink are developed. Finally the designed system is verified by simulation and their characteristics are analyzed by the simulation results.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1018-1022
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340 V breakdown voltage. The channel thickness was 3 urn and the channel doping concentration is $1e17\;cm^{-3}$. And we carried out thermal characteristics, too.