구조물의 비선형 거동을 추적 조사하는 비선형 유한요소 해석에서 하중증분을 사용하는 Newton-Raphson방법은 임계점 근처에서는 수렴이 안되는 단점을 갖고 있으므로 구조물의 거동이 심한 비선형 경로(nonlinear path)를 포함하고 있는 구조물의 거동을 조사하기 위해서는 Newton-Raphson 방법의 부가적인 수정이 필요하다. Newton-Raphson 방법의 수정보완 방법으로 Riks에 의해 제안된 구속조건식을 사용하여 반복계산하는 arc-length method로써 접선강성벡터에서 수직인 방향으로 접근하는 방법(normal arc-length method)과 접선강성벡터가 원호를 그리며 비선형 경로에 접근해 가는 방법(cylindrical arc-length method)을 사용하였으며 또한 각 단계에서 비선형의 정도에 따라 arc-length를 조절하는 자동하중 증분법을 사용하였다. 비선형 수치해석의 예로 경사진 외팔보, 단순 아치구조, 쉘 구조 및 편심 보강평판의 비선형 거동을 추적 조사하였다.
Electrical resistance tomography(ERT)는 적절하게 설계된 전류를 대지 지하에 주입하여 이에 따른 인가전압을 대지 경계에서 측정한 후 이를 근거로 ERT의 영상복원 알고리즘에서 대지 지하의 대지저항률 분포를 얻고 대지 지하에 뭍힌 물체를 크기와 위치, 그리고 저항률에 대한 특성을 파악할 수 있는 기술이다. 본 논문에서는 ERT의 영상복원 기법으로 Gauss-Newton, TLS와 SIRT 방법들을 살펴본다. 컴퓨터 시뮬레이션을 통해 TLS 방법을 이용한 ERT 영상복원의 성능이 Gauss-Newton와 SIRT방법에 의해 얻어진 결과보다 향상되는 것을 보이도록 한다.
본 논문은 공간시계열자료가 공간의 위치와 시간의 흐름에 따라 동시에 관측되는 분야인 기상, 지질, 천문, 생태, 역학 등에서 아주 넓이 사용되고 있고 그 수요가 점차 증가하는 이 시기에 복잡한 공간시계열 중선형(STBL) 모형에 대한 모수 추정 방법 중 수치 해석적 방법인 Newton-Raphson 방법과 Kalman-Filter 방법을 비교하고, 두 가지 방법에 의한 예측력을 비교하여 보았다.
본 연구는 무한급수와 멱급수의 발생 배경과 발달 과정의 인식론적 토대가 되었던 뉴턴의 이항정리(binomial theorem)의 개념을 살펴보고, 그 발달 과정에서 얻어진 제곱근의 근삿값 구하는 방법, 뉴턴의 역유율법을 이용한 정적분 구하는 방법, 그리고 메르카토어 급수와 그레고리 급수의 발견 과정을 알아보고자 한다. 이 과정을 통하여 뉴턴의 이항정리가 가지는 수학사의 교수법적 논의를 제시하고자 한다.
각종 구조물의 설계에 있어서 동적해석은 필수적이다. 이러한 구조물의 동적해석에 모우드 중첩법을 사용할 경우 고유치문제의 해석이 선행되어야 한다. 그러나 동적해석에 있어서 대부분의 노력, 즉 시간은 고유치와 그에 대응하는 고유벡터를 구하기 위하여 사용되기 때문에 보다 효율적인 고유치해법의 개발이 요구된다. 본 논문은 수치적 불안정성을 해소하고 수렴성을 향상시킴으로써 전체 해석시간을 줄이기 위해 Robinson-Lee 방법에 accelerated Newton-Raphson 방법을 적용한 고유치해법을 제시하였다. 제안방법의 효율성은 몇가지의 수치해석을 통해서 증명하였다.
본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.
본 논문에서는 영상의 공간 정합과 서로 다른 노출의 보정을 동시에 최적화하기 위한 연구를 수행하였다. 노출 보정은 영상의 밝기 보정이라는 틀 안에서 두 영상의 관계식을 다항식 근사를 통하여 이루는데, 이를 가우스-뉴톤 방식의 비선형 최적화 기법을 이용하여 공간 정합과 동시에 수행을 한다. 본 논문에서는 보다 신뢰성 있고 단순한 동시 최적화를 위하여 블록 좌표(block-coordinate) 방법과의 결합을 제안하며 심도 있는 모의실험을 통하여 성능을 비교하였다. 나아가서 블록 좌표 방법의 단순성과 융통성을 이용하여 밝기 보정에 회기 분석 기법을 도입하여 여러 종류의 영상에 대하여 안정성에서도 우수한 성능을 보이는 최적화를 수행하였다. 기존의 가우스-뉴톤 최적화에 블록 좌표 방법을 결합하여 일반 가우스-뉴톤 최적화에 비하여 계산을 단순화시키면서 보다 빠르게 수렴하는 특성을 보이며 대등한 성능의 칙적화를 수행할 수 있었다. 실험 결과를 보면 특정 영상에서 10회 반복정도로 원하는 수렴 결과를 얻었는데 이는 알고리듬 수행을 위한 계산을 50%정도 감소시킨 것이다 또한 에러도 1.5dB이상 감소시켰다.
본 논문에서는 회로해석 중에서 DC및 과도(transient)해석에 필요한 비선형 대수 방정식을 풀기 위한 새로운 방법으로서 Quadratic Newton Raphson Method(QNRM)을 제안한다. QNRM은 Newtok-Raphson method(NRM)에 기본을 두고 있지만, 비선형 대수 방정식의 Taylor 급수 전개에서 2차 미분항을 포함한다. 각 반복 과정에서 미지수에 관한 2차식이 되는데 해를 예측함으로서 선형화 할 수 있다. QNRM의 수렴속도를 올리기 위해서는 이 해의 정확한 예측이 매우 중요하명 그 한 방법을 제시하였다. QNRM을 DC및 과도해석에 적용한 결과 NRM을 사용한 것보다 계산시간 및 반복횟우에 있어서 25% 이상 감소됨을 보여주었다.
본 논문에서는 가우스 뉴튼법을 이용한 중합전 탄성파 자료의 파형역산에 관한 연구를 수행하였다. 탄성파 파형역산에 가우스 뉴튼법을 적용하는 방법은 80년대에 제시되었으나 최근 들어서야 활발히 연구가 진행되고 있는데 이는 연산 능력과 기억용량의 한계에 기인한 것이다. 이를 극복하기 위해 본 연구에서는, 파동 전파 수치모의와 역산과정에서 각각 다른 크기의 격자간격을 사용하고, 필요한 시간영역의 파동전파 모사와 가상 진원의 근사를 통해 편미분 파형을 계산하였으며, 효과적으로 슈퍼컴퓨터를 활용하기 위해 병렬처리 기법을 사용하였다. 수치모의를 통해, 가우스 뉴튼법을 이용한 파형 역산의 수렴속도가 빠르고 정확한 것을 알 수 있었으며, 이를 통해 본 연구에서 제시한 방법의 실제 탄성파 자료를 이용한 역산에의 적용가능성을 확인하였다.
Levenberg-Marquardt은 최소자승법 문제의 풀이법으로 잘 알려져 있다. 하지만 이전의 표적기동분석(TMA)의 추적필터의 경우 대부분 Gauss-Newton방법을 사용하고 있으며 Gauss-Newton은 역행열 연산이 요구되어 시스템을 불안정하게 만드는 문제점이 있다. 본 논문에서는 Gauss-Newton의 수치적 불안정성을 해결하기 위해 TMA에 Levenberg-Marquardt을 적용하여 Levenberg-Marquardt이 적용된 표적기동분석 알고리즘의 안정성을 실험으로 보인다. 이를 위해 실험에서는 Monte-Calro 시물레이션을 3개 시나리오에 대하여 수행하였으며 그 결과 Levenberg-Marquardt이 Gauss-Newton에 비하여 표적기동분석 결과인 거리, 침로, 속력의 수렴되는 시간이 빨라졌으며 행렬의 발산빈도가 저하되어 표적기동분석 결과가 안정화되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.