• Title/Summary/Keyword: Newly formed bone

Search Result 165, Processing Time 0.022 seconds

Chronic Epidural Hematoma with Ossification - A Case Report - (골화를 동반한 만성 경막외혈종 - 증례보고 -)

  • Shim, Kyu Won;Chang, Jong Hee;Chang, Jin Woo;Park, Yong Gou;Kim, Tai Seung;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.943-946
    • /
    • 2001
  • We report a case of 15 year-old female patient with a ossified chronic epidural hematoma. She had had head trauma 10 weeks previously and conservative care for delayed onset epidural hematoma at other hospital. Ossification was identified about 4 weeks after head injury and then progressed rapidly. We removed the chronic epidural hematoma with thick capsule and newly formed bone. The mechanism of the ossification associated with cephalhematoma and chronic subdural hematoma is reviewed and discussed.

  • PDF

THE BONE FORMATION AROUND ANODIC OXIDIZED TITANIUM IMPLANTS IN THE TINBIAE OF OVARECTOMIZED RATS (양극산화 표면처리한 티타늄 임플랜트를 난소절제한 백서 경골에 매식 후 주위 골형성에 관한 연구)

  • Park, Sung-Hwan;Jung, Suk-Young;Lee, Jae-Yeol;Kim, Gyoo-Cheon;Shin, Sang-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.306-318
    • /
    • 2008
  • Anodic spark deposition method(ASD) surface treated titanium implant possesses a considerable osteoconductive potential that promoting a high level of implant osseointegration in normal bone. The purpose of this study was to observe the ASD implant's osseointegration in the osteoporosis-induced animal model. Twenty four rats, 10 weeks of age, were ovarectomized and 5 weeks later divided into two groups : ASD implant group and control implant group. Titanium screw implants (diameter; 2.0 mm, length, 3.5 mm; pitch-height, 0.4 mm) were designed for this study. Experimental implants were ASD treated and no treatment on control implants. ASD implants and control implants were placed in to left tibiae of rats. The rats were sacrificed at different time interval(1, 2, 4 and 8 weeks after implantation) for histopathologic observation and immunohisto-chemistrical observation, with collagen type Ⅰ, fibronectin, integrin ${\alpha}_2{\beta}_1$ and integrin ${\alpha}_5{\beta}_1$ antibodies. The results obtained from this study were as follow: 1. Histopathologic findings, overall tissue response and the pattern of bone formation in both groups were similar. In ASD group, more newly formed bone was seen at 1 week and 2weeks than control group. 2. The levels of type Ⅰ collagen and fibronectin expression were the most abundant at 2weeks and decreased gradually in both groups. Fibronectin and type Ⅰ collagen expression in ASD group were stronger than control group but no significance. 3. The levels of integrin ${\alpha}_2{\beta}_1$ and Integrin ${\alpha}_5{\beta}_1$ expression were most abundant at 2 weeks and decreased gradually in both groups. No significant difference was observed in both groups. From this results, anodic oxidized titanium implants were more advantages in early stage of bone formation than control group, but have no significance in tissue responses and late bone formations. It could be stated that although anodic oxidized titanium implant possesses considerable osteoconductive potential but in osteoporotic bone condition dental implant procedure should performed after improving or treating the osteoporotic bone condition.

Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect

  • Park, Jung-Chul;Lim, Hyun-Chang;Sohn, Joo-Yeon;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.223-230
    • /
    • 2009
  • Purpose: Synthetic bone products such as biphasic calcium phosphate (BCP) are mixtures of hydroxyapatite (HA) and ${\beta}$-tricalcium phosphate (${\beta}$- TCP). In periodontal therapies and implant treatments, BCP provides to be a good bone reconstructive material since it has a similar chemical composition to biological bone apatites. The purpose of this study was to compare bone regeneration capacity of two commercially available BCP. Methods: Calvarial defects were prepared in sixteen 9-20 months old New Zealand White male rabbits. BCP with HA and ${\beta}$- TCP (70:30) and BCP with Silicon-substituted hydroxyapatite (Si-HA) and ${\beta}$-TCP (60:40) particles were filled in each defect. Control defects were filled with only blood clots. Animals were sacrificed at 4 and 8 week postoperatively. Histomorphometric analysis was performed. Results: BCP with HAand ${\beta}$- TCP 8 weeks group and BCP with Si-HA and ${\beta}$- TCP 4 and 8 weeks groups showed statistically significant in crease (P <0.05) in augmented area than control group. Newly formed bone area after 4 and 8 weeks was similar among all the groups. Residual materials were slightly more evident in BCP with HA and ${\beta}$- TCP 8 weeks group. Conclusions: Based on histological results, BCP with HA and ${\beta}$- TCP and BCP with Si-HA and ${\beta}$- TCP appears to demonstrate acceptable space maintaining capacity and elicit significant new bone formation when compared to natural bone healing in 4 and 8 week periods.

The Effects of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone in the Periodontally involved extraction sockets in dogs. (Porous Resorbable Calcium Carbonate와 Porous Replamireform Hydroxyapatite가 성견치주질환 이환 발치와내 이식된 치근과 발치와 치조골 재생에 미치는 영향)

  • Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.334-349
    • /
    • 1996
  • Regeneration of the periodontal tissue destroyed by periodontal disease is one of the final goals of periodontal therapy. In the past few years, periodontists have used various alloplastic grafting materials in an attempt to regenerate bone lost from periodontal disease. These materials have used widely because they have shown to be nontoxic, biologically compatible with surrounding host tissue and chemically similar to bone. The purpose of this study was to investigate the effect of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone and the healing of roots transplanted into the periodontally diseased extraction sockets of dogs. The experimental chronic periodontitis was induced by elastic ligatures on the 2nd and 3rd mandibular premolars of 2 adult dogs for 8weeks after surgically creating periodontal defect. The extracted root were split in half along the long-axis, and the extend of plaque exposure was marked on the root surfaces with burs. The roots were inserted in extraction sockets with Porous Resorbable Calcium Carbonate(PRCC) in left side and with Porous Replaminefrom Hydroxyapatite(PRH) in right side. The flaps were sutured to cover the sockets completely. The animals were sacrificed after 12 weeks of healing, and the specimens were examined histologically. The results were as follows: 1. No inflammatory reactions were observed in either groups. 2. Hoot resorption was observed in both groups while the general outline of the roots were maintained. 3. PRCC was almost completely resorbed and replaced with new bone, while R.H.A. was not resorbed & remained encased in newly-formed C-T and alveolar bone. 4. PRH was encapsulated with alveolar bone which has been deposited from apical & lateral area of the sockets, while the coronal portion of the sockets were filled with C-T. 5. In both groups, the resorbed portions of the roots were replaced with new bone. These results suggest that either PRCC or PRH may not interfere with bone formation or healing in extraction sockets, and in some degree, retard the root resorption. Because the roots maintained in anatomy, we think that graft materials prevent the root resorption.

  • PDF

Socket preservation using deproteinized horse-derived bone mineral

  • Park, Jang-Yeol;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Purpose: The healing process following tooth extraction apparently results in a pronounced resorption of the alveolar ridge. As a result, the width of alveolar ridge is reduced and severe alveolar bone resorption occurs. The purpose of this experiment is to clinically and histologically evaluate the results of using horse-derived bone mineral for socket preservation. Methods: The study comprised 4 patients who were scheduled for extraction as a consequence of severe chronic periodontitis or apical lesion. The extraction was followed by socket preservation using horse-derived bone minerals. Clinical parameters included buccal-palatal width, mid-buccal crest height, and mid-palatal crest height. A histologic examination was conducted. Results: The surgical sites healed uneventfully. The mean ridge width was $7.75{\pm}2.75\;mm$ at baseline and $7.00{\pm}2.45\;mm$ at 6 months. The ridge width exhibited no significant difference between baseline and 6 months. The mean buccal crest height at baseline was $7.5{\pm}5.20\;mm$, and at 6 months, $3.50{\pm}0.58\;mm$. The mean palatal crest height at baseline was $7.75{\pm}3.10\;mm$, and at 6 months, $5.00{\pm}0.82\;mm$. There were no significant differences between baseline and 6 months regarding buccal and palatal crest heights. The amount of newly formed bone was $9.88{\pm}2.90%$, the amount of graft particles was $42.62{\pm}6.57%$, and the amount of soft tissue was $47.50{\pm}9.28%$. Conclusions: Socket preservation using horse-derived bone mineral can effectively maintain ridge dimensions following tooth extraction and can promote new bone formation through osteoconductive activities.

Effect of fibroblast growth factor on injured periodontal ligament and cementum after tooth replantation in dogs

  • Yu, Sang-Joun;Lee, Jung-Seok;Jung, Ui-Won;Park, Joo-Cheol;Kim, Byung-Ock;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.111-119
    • /
    • 2015
  • Purpose: The purpose of this animal study was to perform a histological and histomorphometric analysis in order to elucidate the effect of fibroblast growth factor-2 (FGF-2) on injured periodontal ligament (PDL) and cementum after tooth replantation in dogs. Methods: The roots of 36 mandibular premolars from six mongrel dogs were used in this study. The roots were randomly divided into three groups: (1) a positive control group (n=12), in which the PDL was retained; (2) a negative control group (n=12), in which the PDL and the cementum between the notches were removed; and (3) an experimental group (n=12), in which the PDL and the cementum between the notches were removed and the roots were soaked in an FGF-2 solution ($30{\mu}g/0.1mL$). After treating the root surfaces, the extracted roots were replanted into extraction sockets. The animals were sacrificed four and eight weeks after surgery for histologic and histomorphometric evaluation. Results: At four and eight weeks, normal PDLs covered the roots in the positive control group. In the negative control group, most replanted roots showed signs of replacement resorption. In the experimental group, new PDL-like tissue and cementum-like tissue were observed to partially occupy the region between the root surfaces and the newly formed bone. Histomorphometric analysis showed that the mean length of the newly formed cementum-like tissue on the roots treated with FGF-2 was significantly greater than that of the tissue on the roots in the negative control group (four weeks, P=0.008; eight weeks, P=0.042). However, no significant differences were observed between the roots treated with FGF-2 and the negative control roots with respect to newly formed PDL-like tissue. Conclusions: The results of this study suggest that use of FGF-2 on injured root surfaces promotes cementogenesis after tooth replacement in dogs.

EFFECT OF CALCIUM AND VITAMIN D SUPPLEMENTATION ON BONE FORMATION AROUND TITANIUM IMPLANT IN OSTEOPOROSIS-INDUCED RATS (골다공증 유도 흰쥐에서 칼슘과 비타민 D 섭취가 티타늄 임플랜트 주위의 골 형성에 미치는 영향)

  • Lee, Jae-Yeol;Jeong, Seok-Young;Shin, Sang-Hun;Kim, Gyoo-Cheon;Kim, Yong-Deok;Chung, In-Kyo;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.276-284
    • /
    • 2008
  • Purpose: The purpose of this study was to observe the effect of calcium and vitamin D to the titanium implant osseointegration in the osteoporosisinduced animal model. Material and method: Thirty-two rats, 10 weeks of age, were divided into two groups: experimental group was ingested additional calcium and vitamin D, and a control group was not. Titanium screw implant(diameter, 2.0 mm; length, 3.5 mm; pitch-height 0.4 mm) were placed into tibia of 32 rats, 16 in the control group and 16 in the experimental group. The rats were sacrificed at 1, 2, 4 and 8 weeks after implantation for histopathologic examination, histomorphometric analysis and immunohistochemistry with fibronectin and collagen type I antibody. Result: In histopathological findings, newly formed bone was seen at 2 weeks and became lamellar bone at 4 weeks, and mature trabecullar bone was seen at 8 weeks in experimental group. In control group, thickness of regenerated bone increased till 4 weeks gradually and trabecullar bone was seen at 8 weeks. In histomorphometric analysis, marrow bone density increased significantly in experimental group compared to control group. Fibronectin immunoreactivity was strong at 2 weeks in experimental group and reduced after 4 weeks gradually. But it was maintained continuously from 2 to 8 weeks in control group. Collagen type I immunoreactivity was very strong from 2 to 4 week in experimental group. And the amount of Collagen type I expression was more abundant in experimental group. Conclusion: The results of this study suggest that calcium and vitamin D supplementation promote bone healing around titanium implants in osteoporosis induced animals.

Effects of Recombinant Human Bone Morphogenetic Protein-2 loaded Acellular Dermal Matrix on Bone Formation (재조합 골형성 단백질 2형(rh-BMP-2) 함유 무세포성 진피조직(acellualr dermal matrix)의 골재생 효과)

  • Song, Dae-Seok;Kim, Tae-Gyun;Jung, Ui-Won;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.511-522
    • /
    • 2007
  • Introduction : The purpose of this study was to evaluate the possibility of the acellular dermal matrix (ADM) as a barrier membrane for bone regeneration, and to evaluate the osteogenic effect of ADM as a carrier system for rhBMP-2 in the rat calvarial defect model. Materials and Methods: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 60 male Spraque-Dawley rats(weight $250{\sim}300g$). Three groups of 20 animals, each received either rhBMP-2(0.025mg/ml) in an ADM carrier, ADM only, or negative surgical control. And each group was divided into 2- and 8-weeks healing intervals. The groups were evaluated by histologic and histomorphometric parameters(10 animals/group/healing intervals). Data were expressed as $means{\pm}standard$ deviations($m{\pm}SD$). Comparisons between experimental and control groups were made using two-way ANOVA and post hoc t-test. Comparisons between 2 weeks and 8 weeks were made using paired t-test. The level of statistical difference was defined as P< 0.05. Results : The ADM group and rhBMP-2/ADM group results in enhanced local bone formation in the rat calvarial defect at both 2 and 8 weeks. The amount of defect closure and new bone formation were significantly greater in the rhBMP-2/ADM group relative to ADM group(P<0.05). At 8 weeks, the majority of ADM in the defect was contracted, and integrated with surrounding host tissues. In addition, host cell infiltration and neovascularization of the ADM in the absence of an inflammatory response were observed, and the newly formed bone around ADM showed a continuous remodeling and consolidation. Conclusion : The results of the present study indicated that ADM may be used as a barrier membrane for bone regeneration and that may be employed as a delivery system for BMPs.

The Effects of Hydroxyapatite-Chitosan Membrane on Bone Regeneration in Rat Calvarial Defects

  • Shin, Jung-A;Choi, Jung-Yoo;Kim, Sung-Tae;Kim, Chang-Sung;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.213-222
    • /
    • 2009
  • Purpose: Recently, interest in chitosan has increased due to its excellent biological properties such as biocompatibility, antibacterial effect, and rapid healing capacity. On the other hand, hydroxyapatite is used as a bone substitute in the fields of orthopedics and dentistry. The hydroxyapatite-chitosan (HA-CS) complex containing hydroxyapatite nanoparticles was developed for synergy of both biomaterials. The objective of this study was to evaluate the effect of hydroxyapatite (HA)-chitosan (CS) membrane on bone regeneration in the rat calvarial defect. Methods: Eight-millimeter critical-sized calvarial defects were created in 70 male Sprague-Dawley rats. The animals were divided into 7 groups of 10 animals and received either 1) chitosan (CS) 100% membrane, 2) hydroxyapatite (HA) 30%/CS 70% membrane, 3) HA 30%/CS 70%, pressed membrane, 4) HA 40%/CS 60% membrane, 5) HA 50%/CS 50% membrane, 6) HA 50%/CS 50%, pressed membrane, or 7) a sham . surgery control. The amount of newly formed bone from the surface of the rat calvarial defects was measured using histomorphometry, following 2- or 8- week healing intervals. Results: Surgical implantation of the HA - CS membrane resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. The HA - CS membrane would be significantly more effective than the chitosan membrane in early bone formation. Conclusions: Concerning the advantages of biomaterials, the HA-CS membrane would be an effective biomaterial for regeneration of periodontal bone. Further studies will be required to improve the mechanical properties to develop a more rigid scaffold for the HA-CS membrane.

THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT (가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구)

  • Lee, Jun;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Sung-Rym;Cha, Su-Ryun;Jang, Jae-Deog;Kim, Eun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).