• Title/Summary/Keyword: New Design Validation

Search Result 207, Processing Time 0.026 seconds

SLP Application and Validation for the Layout of User Interface Components (사용자 인터페이스 구성요소의 레이아웃을 위한 SLP 적용 및 검증)

  • Shin, Hyun-Bong;Jung, Kwang-Tae
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.485-493
    • /
    • 2005
  • In this study, a method that can objectively and systematically design the layout of user interface components was developed. In order to explain its application method, the method was applied to the layout design of facsimile. In particular, in order to validate the suitability of the method, comparison tests were performed for the case of facsimile. Computer simulators for layout design were made using Micromedia Flash and comparison evaluation for an existing layout and a new layout was performed in three aspects. The first comparison method was to measure and compare its movement distance when carrying out a task in two layout models. The second one was to measure and compare users' performance. The last one was to measure and compare users' subjective satisfaction after using two models. As the result, new layout design was better than the existing design in all comparison tests. The movement distance of the new layout design model was shorter than the existing model. And, its performance including task completion time and error frequency was better and users' satisfaction was higher than the existing. In conclusion, the method that was developed in this study can be very effectively used in the layout design of user interface components.

Optimal Placement of Measurements using Genetic Algorithms for Harmonic State Estimation (고조파 상태 추정에 있어서 유전 알고리즘을 이용한 최적 측정위치 선정)

  • Chung, H.H.;Wang, Y.P.;Lee, J.P.;Park, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.298-300
    • /
    • 2002
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. In particular, the number of available harmonic instruments(Continuous Harmonic Analysis in Real Time : CHART) is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs). This HSE has been applied to the New Zealand AC Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using GAs in the HSE.

  • PDF

First Principles Computational Study of Surface Reactions Toward Design Concepts of High Functional Electrocatalysts for Oxygen Reduction Reaction in a Fuel Cell System

  • Hwang, Jeemin;Noh, Seunghyo;Kang, Joonhee;Han, Byungchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Design of novel materials in renewable energy systems plays a key role in powering transportation vehicles and portable electronics. This review introduces the research work of first principles-based computational design for the materials over the last decade to accomplish the goal with less financial and temporal cost beyond the conventional approach, especially, focusing on electrocatalyst toward a proton exchange membrane fuel cell (PEMFC). It is proposed that the new method combined with experimental validation, can provide fundamental descriptors and mechanical understanding for optimal efficiency control of a whole system. Advancing these methods can even realize a computational platform of the materials genome, which can substantially reduce the time period from discovery to commercialization into markets of new materials.

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam;Kharchi, Fattoum;Lefkir, Abdelouhab
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.679-700
    • /
    • 2013
  • Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

A Study of Non-Disruptive Update Scheme for Online Game (온라인게임을 위한 무 정지 업데이트 기법의 연구)

  • Kang, Sang-Yong;Han, Jung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1307-1312
    • /
    • 2014
  • Online games are virtual space where it connects individual users through network connection to offer enjoyment of play games and game developer who service online games have to develop new contents and provide them to users to extend life of their service. Typically, in order to update new contents, all service companies have maintenance schedule to stop the game service for a while to update both server and client applications. Usually this process takes quite amount of time and users do not have any other choice but disconnected from server and wait until it is over. The purpose of this thesis is to describe the advantages of new design system which will allows users to continue to play the game even during the update. The main focus of this design is to make users feel more convenience in online gaming experience by move client from previous server to new server while users are still playing. If they can to connect current client with new server without any certificate validation process while users information from the client can automatically pass through to the new server, users may not need to experience maintenance for new contents update.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

An Outlook for Interaction Experience in Next-generation Television

  • Kim, Sung-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.557-565
    • /
    • 2012
  • Objective: This paper focuses on the new trend of applying NUI(natural user interface) such as gesture interaction into television and investigates on the design improvement needed in application. The intention is to find better design direction of NUI on television context, which will contribute to making new features and behavioral changes occurring in next-generation television more practically usable and meaningful use experience elements. Background: Traditional television is rapidly evolving into next-generation television thanks to the influence of "smartness" from mobile domain. A number of new features and behavioral changes occurred from such evolution are on their way to be characterized as the new experience elements of next-generation television. Method: A series of expert review by television UX professionals based on AHP (Analytic Hierarchy Process) was conducted to check on the "relative appropriateness" of applying gesture interaction to a number of selected television user experience scenarios. Conclusion: It is critical not to indiscriminately apply new interaction techniques like gesture into television. It may be effective in demonstrating new technology but generally results in poor user experience. It is imperative to conduct consistent validation of its practical appropriateness in real context. Application: The research will be helpful in applying gesture interaction in next-generation television to bring optimal user experience in.

A Study on an Evaluation Method for Human/System Interface of Advanced Supervisory Control Systems in Nuclear Power Plant (신형 원자력발전소 감시제어체계의 인간/체계 인터페이스 평가 방법에 관한 연구)

  • Lee, Dong-Ha;Im, Hyeon-Gyo;Jeong, Byeong-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.153-169
    • /
    • 1999
  • The design of nuclear control room is advancing toward totally computer based human system interfaces (HSI). Computer based interfaces offer the opportunity to provide improved support of operator performance, but if not properly deployed, can introduce new challenges. This paper reviews the Westinghouse AP-600 Human Factors Verification and Validation Plan selected for HSI evaluation model of Korea next generation nuclear control rooms. The AP-600 HSI evaluation model addressed 15 evaluation issues considering major activity class of operator and task complexity factors. This paper also describes the test procedures experimenters should follow to evaluate the addressed issues.

  • PDF

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

A Study on a Trend of Human Error Types Observed in a Simulated Computerized Nuclear Power Plant Control Room

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Objective: The aim of this study is to investigate a trend of human error types observed in a series of verification and validation experiments for an Advanced Control Room(ACR) equipped with Lager Display Panel(LDP), Work Station Flat Panel Display(WS FPD), list type Alarm System(AS), Soft Control(SC) and Computerized Procedure System(CPS). Background: Operator behaviors in a fully computerized control room are quite different from those in a traditional hard-wired control room. Operators in an ACR all together monitor plant status and variables through their own interface system such as LDP and WS FPD, are notified of abnormal plant status through their own list type AS, control the plant through their own SC, and follow the structured procedure through their own CPS whereas operators in a traditional control room only separately do their duty directed by their supervisor. Especially the secondary task such as manipulating the user interface of ACR can be an extra burden to all the operators including the supervisor. Method: The Reason's human error classification method was applied to operators' behavioral data collected from a series of verification and validation experiments where operators showed their plant operational behaviors under a couple of harsh scenarios using the ACR simulator. Results: As operators accustomed to the new ACR system, knowledge or rule based mistakes appearing frequently in the early series of experiments decreased drastically in the latest stage of the series. Slip and lapse types of errors were observed throughout the series of experiments. Conclusion: Education and training can be one of the most important factors for the operators accustomed to the traditional control room to be adapted to the new system and to run the ACR successfully. Application: The results of this study implied that knowledge or rule based mistakes can be reduced by training and education but that lapse type errors might be reduced only through innovative improvement in human-system interface design or teamwork culture design including a new leadership style suitable for ACR.