DOI QR코드

DOI QR Code

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam (Houari Boumedienne University (USTHB), Civil Engineering Faculty, Laboratory of Built in Environment (LBE)) ;
  • Kharchi, Fattoum (Houari Boumedienne University (USTHB), Civil Engineering Faculty, Laboratory of Built in Environment (LBE)) ;
  • Lefkir, Abdelouhab (Polytechnic National School (ENP), laboratory of construction and environment (LCE))
  • Received : 2013.05.13
  • Accepted : 2013.08.16
  • Published : 2013.09.10

Abstract

Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

Keywords

References

  1. Abdalla, J.A., Abdelwahab, A. and Sanousi, A. (2005), "Prediction of shear strength of reinforced concrete beams using artificial neural network", Proceedings of the First Int Conference on Modeling, Simulation and Applied Optimization, Sharjah, UAE, February.
  2. Adhikary, B.B. and Mutsuyoshi, H. (2004), "Artificial neural networks for the prediction of shear capacity of steel plate strengthened RC beams", Constr. Build. Mater., 18, 409-417. https://doi.org/10.1016/j.conbuildmat.2004.03.002
  3. Alqedra, M.A. and Ashour, A.F. (2005), "Prediction of shear capacity of single anchors located near a concrete edge using neural networks", Comput Struct., 83, 2495-502. https://doi.org/10.1016/j.compstruc.2005.03.019
  4. ACI 318-08 (2008), "Building Code Requirements for Structural Concrete", American Concrete.
  5. Alam, J.A.K.M., Khan, M.A. and Salek, M.S. (2009), "An experimental study on punching shear behavior of concrete slab", Advances in Structural Engineering, 12(2), 257-265. https://doi.org/10.1260/136943309788251650
  6. Bernaert, M. And Puech, M. (1966), "Compte rendu des travaux du groupe de travaille poinconnement, in :comite Europeen du Beton: Dalle, structure plane", CEB-Bull.d'information, 57. (in French)
  7. Bazant, Z.P. and Cao, Z. (1987), "Size effect in punching shear failure of slabs", ACI Struc Journal, 84(1), 44-53.
  8. Bhatt, P. and Agar, T.J.A. (2000), "A neural network for predicting the punching shear strength of internal column-flat slab junctions without shear reinforcement", Int workshop on punching shear capacity of RC slabs., 57, 39-46.
  9. Beutel, R. and Hegger, J. (2000a), "Punching behaviour of shear reinforced flat slabs atInterior columns - effective and economic shear systems", Inter Workshop on Punching Shear Capacity of RC Slabs - Royal Institute of Technology, Stockholm.
  10. Binici, B. and Bayrak, O. (2003), "Punching shear strengthening of reinforced concrete flat plates using carbon fiber reinforced polymers", Jr of Struct Eng, ASCE, Vol.129, N.9, Etats-Unis, Septembre, 1173-1182.
  11. Choi, K., Taha, M. and Sherif, A. (2007), "Simplified punching shear design method for slab-column connections using fuzzy learning", ACI Struct J, 104(4), 438-47.
  12. Caglar, N., Elmas, M., Yaman, Z.D. and Saribiyik, M. (2008), "Neural networks in 3-dimensional dynamic analysis of reinforced concrete buildings", Constr Build Mater, 22, 788-800. https://doi.org/10.1016/j.conbuildmat.2007.01.029
  13. Comite Euro-International Du Beton-Federation de la Precontrainte (CEB-FIP) (1990), Model Code, Bulletin D'Information No. 203-305, Lausanne, Switzerland.
  14. Caglar, N. (2009), "Neural network based approach for determining the shear strength of circular reinforced concrete columns", Constr Build Mater, 23, 3225-32. https://doi.org/10.1016/j.conbuildmat.2009.06.002
  15. CBA 93 (1999), "Regles de conception et de calcul des structures en beton arme", Algerie.
  16. Corley, G. And Hawkins, N.M. (1968), "Shear head reinforcement for slabs", ACI Journal, 65(10), 811-824.
  17. Dahou, Z., Sbartai, Z.M., Castel, A. and Ghomari, F. (2009), "Artificial neural network model for steel-concrete bond prediction", Eng Struct, 31, 1724-33. https://doi.org/10.1016/j.engstruct.2009.02.010
  18. Dieterle, H. and Rostasy, F.S. (1981), "Versuche an quadratischen Einzelfundamente mit und ohne Schubbewehrung", Bericht uber das Forschungsvorhaben V 175, Otto-Graf- Institut, Universitat Stuttgart.
  19. Elshafey, A.A. et al. (2011), "prediction of punching shear strength of two-way slabs", Eng Struct.
  20. El-Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence", Comput. Concr., 2(1), 79-96. https://doi.org/10.12989/cac.2005.2.1.079
  21. Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv Eng Software, 41, 270-6. https://doi.org/10.1016/j.advengsoft.2009.07.006
  22. Elstner, R. and Hognestad, E. (1956), "Shearing strength of reinforced concrete slabs", ACI J Proc., 53(1), 29-58.
  23. Gomes, H.M. and Awruch, A.M. (2004), "Comparison of response surface and neural network with other methods for structural reliability analysis", Struct. Saf., 26, 49-67. https://doi.org/10.1016/S0167-4730(03)00022-5
  24. Hgoh, A.T.C. (1995), "Prediction of ultimate shear strength of deep beams using neural networks", ACI Struct. J., 92(1), 28-32.
  25. Gardner, N. (1990), "Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength", ACI Struct J., 87(1), 66-71.
  26. Guandalini, S. and Muttoni, A. (2004), "Symmetrical punching tests on slabs without transverse reinforcement", Test Report. Ecole Polytechnique Federale de Lausanne. Lausanne. Switzerland.
  27. Hadi, M. (2003), "Neural networks applications in concrete structures", Comput. Struct., 81, 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0
  28. Hallgren, M. (1996), "Punching shear capacity of reinforced high strength concrete slabs", Bulletin 23, depart of Struct Eng Royal Institute of Technology, Stockholm.
  29. Hallgren, M., Kinnunen, S. and Nylander, B. (1983, 1998), "Punching shear tests on column footings", Technical Report, Dept. of Struct Eng, Royal Institute of Technology, Stockholm.
  30. Hegger, J., Beutel, R., Goralski, C. and Bertram, G. (2001), "Versuchsbericht zum Durchstanzen mit halfen HDB-N-Ankern als Durchstanzbewehrung im Bereich von Innenstutzen", RWTH, Aachen.
  31. Harajli, M.H. and Soudki, K.A. (2003), "Shear Strengthening of Interior Slab-Column Connections Using Carbon Fiber-Reinforced Polymer Sheets", Journal of Composites for Construction, 7(2), Etats-Unis, 145-153. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(145)
  32. Kinnunen, S. and Nylander, H. (1960), "Punching of concrete slabs without shear reinforcement", Transactions No. 158. Royal Institute of Technology, Stockholm, Sweden.
  33. Kawamura, K., Miyamoto, A., Frangopol, D.M. and Kimura, R. (2003), "Performance evaluation of concrete slabs of existing bridges using neural networks", Eng. Struct., 25, 1455-77. https://doi.org/10.1016/S0141-0296(03)00112-3
  34. Krueger, G. (1999), "Resistance au poinconnement excentre des planchers-dalles", EPFL, These de doctorat N. 2064, Lausanne, Suisse.
  35. Ladner, M. (1973), "Einflub der mabstabgrobe bei Durchstanzvesuchen-Ableitung eines begrundeten obertragunggestzes", Material und Techniks, 60-68.
  36. Ladner, M., Schaeidt, W. And Gut, S. (1977), "Experimentelle Untersuchgen an tahlbeton-flachdeken", Eidgenossische Materalprufungs-und Versuchsanstalt, Bericht Nr. 205, Dubendorf.
  37. Lovrovich, D.I., Phan, L.T., Lew, H.S. and White, R.N. (1990), "punching shear behavior of lightweight concrete slabs and shells", ACI Structure Journal., 386-392.
  38. Mohamedzein,Y.E.A., Ibrahim, O.I. and Abdalla, J.A. (2003), "Structural member sizing using artificial neural network", The Nineth Arab Structural Engineering Conference, Abu Dhabi, UAE.
  39. Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26, 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011
  40. Moe, J. (1961), "Shearing strength of reinforced concrete slabs and footings under concentrated loads. Development", Depart Bulletin No. D47, Portland Cement Association, Skokie.
  41. Marzouk, H. and Hussein, A. (1991), "Experimental investigation on the behavior of highstrength concrete slabs", ACI Struct J., 88(6), 701-13.
  42. Muttoni, A. (1990), "Die Anwendbarkeit der Plastizitatstheorie in der Bemessung von Stahlbeton, Birkhauser Verlag", Institut fur Baustatik und Konstruktion ETH Zurich, Basel, Suisse.
  43. Manterola, J. (1966), "Punzonamiento de placas sin armadura de esfuerzo cortante (mecanismos de redistribucion de esfuerzos y rotura", Instituto Eduardo Torroja de la Construccion y del Cemento, 71-97.
  44. Nielsen, M.P. (2000), "Plasticity approach to punching shear in reinforced concrete", International workshop on Punching Shear Capacity of RC Slabs", KTH Bulletin 57, Danemark.
  45. Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26, 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009
  46. Pralong, J. (1981), "Poinconnement Symetrique des Plachers-Dalles", IBKBericht No. 131, Insitut fur Baustatik und Konstruktion, ETH Zurish.
  47. Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2007), "Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete", Eng Struct., 29, 2069-79. https://doi.org/10.1016/j.engstruct.2006.11.009
  48. Pralong, J., Brandli, W. and Thurlimann, B. (1979), "Durchstanzersuche an Stahlbeton und Spannbetonplatten, Birkhauser Verlag", Inst fur Baustatik und Konstruktion ETH Zurich, 7, 305-3, Suisse.
  49. Rankin, G. and Long, A. (1987), "Predicting the punching strength of conventionalslab-column specimens", Proc Instit Civ Eng, Part 1, 82, 327-46. https://doi.org/10.1680/iicep.1987.382
  50. Regan, P., Walker, P. and Zakaria, K. (1979), "Tests of reinforced concrete flat slabs", CIRIA Project No. RP 220, Polytechnic of Central London.
  51. Ramdane, K. (1996), "Punching shear of high performance concrete slabs", In Proceedings of the 4th international symposium on utilization of high strength high performance concrete, Paris.
  52. Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks", J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
  53. SIA 262 (2008), Construction en beton, Societe Suisse des Ingenieurs et des Architectes, Norme suisse SN 505 262, Suisse.
  54. Schafers, U. (1984), "Konstruktion, Bemessung und Sicherheit gegen Durchstanzen von balkenlosen stahlbetondecken im Bereich von Innenstutzen", Deutscher Ausschuss fur Stahlbeton , Berlin, Allemagne.
  55. Sundquist, H. and Kinnunen, S. (2004a), "The effect of large column section and slab thickness taper on the punching shear capacity of flat slabs", Bulletin No. 81, Dept. of Civil and Architectural Engineering, Royal Institute of Technology, Stockholm.
  56. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to'modeling and control", 15, 116-132.
  57. Tolf, P. (1988), "Plattjocklekens inverkan poa betongplattors hoallfasthet vid genomstansning Forsok med cirkulara platter", Bulletin No. 146, Department of Structural Mechanics and Engineering, Royal Institute of Technology, Stockholm.
  58. Tomaszewicz, A. (1993), "Punching shear capacity of reinforced concrete slabs, high strength concrete", SP2-Plates and Shells. Report 2.3., Report No. STF70A93082, SINTEF, Trondheim.
  59. Timm, M. (2004), "Durchstanzen von Bodenplatten unter rotations symmetrischer belastung", Deutscher Ausschuss fur Stahlbeton, Heft 547, Berlin, Deutscher.
  60. Waszczyszyn, Z. and Ziemianski, L. (2001), "Neural networks in mechanics of structures and materials-new results and prospects of applications", Comput. Struct., 79, 2261-2276. https://doi.org/10.1016/S0045-7949(01)00083-9
  61. Yitzhaki, D. (1966), "Punching strength of reinforced concrete slabs", ACI J, Proc., 63(5), 527-40.
  62. Yh-Shing Roger Jang (1993), "ANFIS: adap tive-Ne twork-based fuzzy inference system", IEEE Trans. Syst., Man, Cybern, 23(3), 65. https://doi.org/10.1109/21.214768

Cited by

  1. Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.203