• 제목/요약/키워드: Nevanlinna's Theory

검색결과 15건 처리시간 0.018초

DIFFERENTIAL EQUATIONS RELATED TO FAMILY A

  • Li, Ping;Meng, Yong
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.247-260
    • /
    • 2011
  • Let h be a meromorphic function with few poles and zeros. By Nevanlinna's value distribution theory we prove some new properties on the polynomials in h with the coefficients being small functions of h. We prove that if f is a meromorphic function and if $f^m$ is identically a polynomial in h with the constant term not vanish identically, then f is a polynomial in h. As an application, we are able to find the entire solutions of the differential equation of the type $$f^n+P(f)=be^{sz}+Q(e^z)$$, where P(f) is a differential polynomial in f of degree at most n-1, and Q($e^z$) is a polynomial in $e^z$ of degree k $\leqslant$ max {n-1, s(n-1)/n} with small functions of $e^z$ as its coefficients.

SECOND MAIN THEOREM AND UNIQUENESS PROBLEM OF ZERO-ORDER MEROMORPHIC MAPPINGS FOR HYPERPLANES IN SUBGENERAL POSITION

  • Luong, Thi Tuyet;Nguyen, Dang Tuyen;Pham, Duc Thoan
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.205-226
    • /
    • 2018
  • In this paper, we show the Second Main Theorems for zero-order meromorphic mapping of ${\mathbb{C}}^m$ into ${\mathbb{P}}^n({\mathbb{C}})$ intersecting hyperplanes in subgeneral position without truncated multiplicity by considering the p-Casorati determinant with $p{\in}{\mathbb{C}}^m$ instead of its Wronskian determinant. As an application, we give some unicity theorems for meromorphic mapping under the growth condition "order=0". The results obtained include p-shift analogues of the Second Main Theorem of Nevanlinna theory and Picard's theorem.

ON THE SIZE OF THE SET WHERE A MEROMORPHIC FUNCTION IS LARGE

  • Kwon, Ki-Ho
    • Korean Journal of Mathematics
    • /
    • 제18권4호
    • /
    • pp.465-472
    • /
    • 2010
  • In this paper, we investigate the extent of the set on which the modulus of a meromorphic function is lower bounded by a term related to some Nevanlinna Theory functionals. A. I. Shcherba estimate the size of the set on which the modulus of an entire function is lower bounded by 1. Our theorem in this paper shows that the same result holds in the case that the lower bound is replaced by$lT(r,f)$, $0{\leq}l$ < 1, which improves Shcherba's result. We also give a similar estimation for meromorphic functions.

ON ENTIRE SOLUTIONS OF NONLINEAR DIFFERENCE-DIFFERENTIAL EQUATIONS

  • Wang, Songmin;Li, Sheng
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1471-1479
    • /
    • 2013
  • In this paper, we study the non-existence of finite order entire solutions of nonlinear differential-difference of the form $$f^n+Q(z,f)=h$$, where $n{\geq}2$ is an integer, $Q(z,f)$ is a differential-difference polynomial in $f$ with polynomial coefficients, and $h$ is a meromorphic function of order ${\leq}1$.

ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

  • Bhoosnurmath, Subhas S.;Kulkarni, Milind Narayanrao;Yu, Kit-Wing
    • 대한수학회보
    • /
    • 제45권3호
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper we consider the problem of whether certain homogeneous or non-homogeneous differential polynomials in f(z) necessarily have infinitely many zeros. Particularly, this extends a result of Gopalakrishna and Bhoosnurmath [3, Theorem 2] for a general differential polynomial of degree $\bar{d}$(P) and lower degree $\underline{d}$(P).

On the Value Distribution of ff(k)

  • Wang, Jian-Ping
    • Kyungpook Mathematical Journal
    • /
    • 제46권2호
    • /
    • pp.169-180
    • /
    • 2006
  • This paper proves the following results: Let $f$ be a transcendental entire function, and let $k({\geq})2$ be a positive integer. If $T(r,\;f){\neq}N_{1)}(r,1/f)+S(r,\;f)$, then $ff^{(k)}$ assumes every finite nonzero value infinitely often. Also the case when f is a transcendental meromorphic function has been considered and some results are obtained.

  • PDF

GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS WITH COEFFICIENTS HAVING THE SAME LOGARITHMIC ORDER

  • Biswas, Nityagopal
    • Korean Journal of Mathematics
    • /
    • 제29권3호
    • /
    • pp.473-481
    • /
    • 2021
  • In this paper, we investigate the relations between the growth of meromorphic coefficients and that of meromorphic solutions of complex linear differential-difference equations with meromorphic coefficients of finite logarithmic order. Our results can be viewed as the generalization for both the cases of complex linear differential equations and complex linear difference equations.