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A NOTE ON THE UNIQUENESS OF MEROMORPHIC
FUNCTIONS SHARING A UNIQUE RANGE SETS IM
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Abstract. In this paper, we study the uniqueness of meromorphic func-
tions sharing a unique range sets Ignoring multiplicities. This paper im-
proves the result of Pulak sahoo and Anjan Sarkar [15].
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1. Introduction

Let f and g be two non-constant meromorphic functions defined in the com-
plex plane C. We adopt the standard notations of Nevanlinna value distribution
theory as explained in [6] and [14]. For any non-constant meromorphic function
f, the symbol S(r, f) stands for any quantity satisfying S(r, f) = o(T (r, f)) as
r → ∞, possibly outside a set of finite linear measure. We denote by M(C) the
class of meromorphic functions defined in C and by M1(C) the class of mero-
morphic functions which have finitely many poles in C.

For a ∈ S(f) ∩ S(g), we say that f and g share the function a = a(z) CM
(counting multiplicity) or IM (ignoring multiplicity) if f − a and g − a have the
same set of zeros counting multiplicities or ignoring multiplicities respectively.
We define,

ρ(f) = lim sup
r→∞

log T (r, f)

logr
and Γ(f) = lim sup

r→∞

T (r, f)

rρ(f)

as order and type of f respectively.
Before presenting the outcome of our study we need the following definition.
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Definition 1.1. For a family of functions G, the subsets S1, S2, · · · , Sq of C ∪
{∞} such that for any f, g ∈ G, f and g share Sj CM for j = 1, 2, · · · , q imply
f ≡ g, are called unique range sets (URS, in brief) for the functions in G.

Definition 1.2. Let k be a positive integer and S1 = {α1, α2, · · · , αk} ⊂ C\{0}.
Suppose that

P (z) =
zk − (

∑
αi)z

k−1 + · · ·+ (−1)k−1((
∑
αi1αi2 · · ·αik−1

)z

(−1)k+1α1α2 · · ·αk
. (1)

where αi ∈ S1 for i = 1, 2, · · · , k. Let m1 be the number of simple zeros and m2

be the number of multiple zeros of P (z). Then we define Γ1 := m1 + m2 and
Γ2 := m1 + 2m2.

Definition 1.3. For a ∈ C ∪ {∞}, we denote by N(r, a; f | = k) the reduced
counting function of those a−points of f whose multiplicities are exactly k. In
particular, N(r, a; f | = 1) or N(r, a; f | = 1) is the counting function of the
simple a−points of f .

Definition 1.4. For a positive integer k, we denote byN(r, a; f | ≤ k)(N(r, a; f | ≥
k)) the counting function of those a−point of f whose multiplicities are not
greater(less) than k, where each a−point is counted according to its multiplic-
ity. N(r, a; f | ≤ k) and N(r, a; f | ≥ k) are the corresponding reduced counting
functions.

Definition 1.5. We denote by N2(r, a; f) the sum N(r, a; f) +N(r, a; f | ≥ 2).

Most of the research works related to set sharing problems was broadly initi-
ated due to the following question raised by Gross [5].

Question 1.1. Can one find two finite sets Si(i = 1, 2) of C ∪ {∞} such that
any two nonconstant entire functions f and g satisfying Ef (Si) = Eg(Si) for
i = 1, 2 must be identical ?

In 1994, Yi [17] gave an affirmative answer to the above question by proving
the following theorem.

Theorem 1.1. Let S1 = {ω|ωn−1 = 0} and S2 = {a}, where n ≥ 5 is an integer,
a ̸= 0 and a2n ̸= 1. If f and g are entire functions such that Ef (Sj) = Eg(Sj)
for j = 1, 2 then f ≡ g.

In this direction, Yi and Yang [21] proved the following two theorems.

Theorem 1.2. Let S1 = {ω | ωn − 1 = 0} and S2 = {∞}. Also, let f and
g be two nonconstant meromorphic functions such that Ef (S1) = Eg(S1) and
Ef (S2) = Eg(S2). If n ≥ 6, then either f = tg or fg = s, where tn = 1, sn = 1
and 0,∞ are lacunary values of f and g.

Theorem 1.3. Let S1 and S2 be defined as in Theorem 1.2. Also, let f, g
be two non constant meromorphic functions such that Ef (S1) = Eg(S1) and
Ef (S2) = Eg(S2). If n ≥ 10, then the conclusion of theorem 1.2 hold.
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In [5], Gross also expressed his quest about how large the sets can be if the
answer of Question 1.1 is affirmative.
In 1998, Yi [19] proved the following theorem regarding to the above comment.

Theorem 1.4. Let S1 = {0} and S2 = {ω|w2(ω+a)−b = 0}, where a and b are
two nonzero constants such that the algebraic equation ω2(ω+a)− b = 0 has no
multiple roots. If f and g are two entire functions satisfying Ef (Sj) = Eg(Sj)
for j = 1, 2, then f ≡ g.

In the last two decades, a lot of research works have been done in this di-
rection(see [4, 9, 10, 16, 20]). We recall the following recent result due to Chen
[2].

Theorem 1.5. Let k be a positive integer and let S1 = {α1, α2, · · · , αk}, S2 =
{β1, β2} where α1, α2, · · · , αk, β1, β2 are k + 2 distinct finite complex numbers
satisfying

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2.

If two nonconstant meromorphic functions f and g in M1(C) share S1 CM, S2

IM and if the order of f is neither an integer nor infinite, then f ≡ g.

In [2], the author proved result concerning unique range sets which is defined
as follows.

Theorem 1.6. Let k be a positive integer and let S1 = {α1, α2, · · · , αk}, S2 =
{β1, β2}, where α1, α2, · · · , αk, β1, β2 are k + 2 distinct finite complex numbers
satisfying

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2.

If the order of f is neither an integer nor infinite, then the sets S1 and S2 are
the URS of meromorphic functions in M1(C).

The necessity of the condition (β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 −

α1)
2(β2 − α2)

2 · · · (β2 − αk)
2 in Theorems 1.5 and 1.6 can be shown by the

following example.

Example 1.1. [2] For a positive integer k, let f(z) = Σ∞
n=1

zn

n3n , g(z) = −f(z), S1 =
{−1, 1,−2, 2, · · · ,−k, k} and S2 = {−(k + 1), k + 1}. Then using the result of
[3](see p.288) we deduce

λ(f) =
1

lim infn→∞
logn3n

nlogn

= lim supn→∞
nlogn

logn3n
=

1

3
.

Clearly f(z), g(z) ∈ M1(C) and f(z), g(z) share S1, S2 CM. But f(z) ̸≡ g(z).
The next example shows that the assumption “ non constant meromorphic func-
tions f and g in M1(C) ” in Theorems 1.5 and 1.6 cannot be relaxed to “
nonconstant meromorphic functions f and g in M(C)”.
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Example 1.2. [2] For a positive integer k, let f(z) = Σ∞
n=1

zn

n3n , g(z) =
1

f(z) , S1 =

{2, 12 , 3,
1
3 , · · · , k,

1
k} and S2 = {k + 1, 1

k+1}. From Example 1.1 we note that
λ(f) = 1

3 and, therefore, using the result of [3](see p.293) we see that g(z) has
infinitely many poles in C. Moreover, f(z) and g(z) share the sets S1, S2 CM.
But f(z) ̸≡ g(z).

The necessity of the assumption in Theorem 1.5 and 1.6 that the order of f
is neither an integer nor infinite can be easily verified by the following example
given in [2].

Example 1.3. For a positive integer k, let f(z) = ez (resp. f(z) = ee
z ),

g(z) = 1
f(z) , S1 = {2, 12 , 3,

1
3 , · · · , k,

1
k} and S2 = {k + 1, 1

k+1}. Then using
Lemma 2.6 in Section 2 we see that λ(f) = 1(resp. λ(f) = ∞). Though all
other conditions of Theorems 1.5 and 1.6 are satisfied, f(z) ̸≡ g(z).

Regarding Theorem 1.5, it is natural to ask the following question:

Question 1.2. Does the conclusion of Theorem 1.5 hold if f and g share both
S1 and S2 IM instead of sharing S1 CM and S2 IM ?

In 2019, P. Sahoo and A. Sarkar [15] try to find out possible answers to the
above question and prove the following theorems.

Theorem 1.7. Let f, g ∈ M1(C) and S1 = {α1, α2, · · · , αk}, S2 = {β1, β2},
where α1, α2, · · · , αk, β1, β2 are k+ 2 distinct non zero complex constants satis-
fying k > 2Γ2 + 3Γ1. If f, g share S1 and S2 IM, then f ≡ g, provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2

and f is non-integer finite order.

Theorem 1.8. Let S1 and S2 be stated as in theorem 1.7 with k > 2Γ2+3Γ1. If
M2(C) denote the subclass of meromorphic functions of non-integer finite order
in M1(C) then the sets S1 and S2 are the URS of meromorphic functions in
M2(C), provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2.

2. Fundamental Lemmas

In this section, we present some lemmas which will be needed in the sequel.
Let us define H as follows :

H =

(
F

′′

F ′ − 2F
′

F − 1

)
−
(
G

′′

G′ − 2G
′′

G− 1

)
.

where F and G are two meromorphic functions in M(C).

Lemma 2.1. [13] Let f be a nonconstant meromorphic functions and P (f) =
a0 + a1f + a2f

2 + · · · + anf
n, where a0, a1, · · · , an are constants and an ̸= 0.

Then T (r, P (f)) = nT (r, f) +O(1).
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Lemma 2.2. [18] If H ≡ 0, then T (r,G) = T (r, F ) +O(1). If, in addition,

lim
r→∞,r ̸∈E

N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

T (r)
< 1.

where T (r) = max{T (r, F ), T (r,G)}, then either F ≡ G or F.G ≡ 1.

Remark 2.1. We observe that the above lemma holds for F,G ∈ M(C). As
our discussion is restricted in M1(C), we may drop the terms N(r,∞;F ) and
N(r,∞;G) while using this result.

Lemma 2.3. Let F,G ∈ M1(C). If F and G share 1 IM and H ̸≡ 0, then
i T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+2N(r, 0;F )+N(r, 0;G)+S(r, F )+
S(r,G);

ii T (r,G) ≤ N2(r, 0;G)+N2(r, 0;F )+2N(r, 0;G)+N(r, 0;F )+S(r, F )+
S(r,G);

Proof. This lemma can easily be obtained from Lemma 2.14 of [1] by considering
the termsN2(r,∞;F ), N(r,∞;F ) as S(r, F ) and the termsN2(r,∞;G), N(r,∞;G)
as S(r,G) since we are dealing with functions of class M1(C) here. □

Lemma 2.4. Let f, g ∈ M1(C). If f, g share the set {β1, β2} IM, then λ(f) =
λ(g).

Proof. Proof of this lemma is very similar to the first part of the proof of Theorem
1.3 in [2] (see p. 1247). Hence we omit the details here. □

Lemma 2.5. (see [14], p.65) Let h be an entire function and f(z) = eh(z). Then
i if h(z) is a polynomial of deg h, then λ(f) = deg h;
ii if h(z) is a transcendental entire function, then λ(f) = ∞.

Lemma 2.6. (see [14], p. 115) Let a1, a2 and a3 be three distinct complex
numbers in C ∪ {∞}. If two nonconstant meromorphic functions f and g share
a1, a2 and a3 CM, and if the order of f and g is neither an integer nor infinity,
then f ≡ g.

3. Main results

Now we prove our Main results

Theorem 3.1. Let f, g ∈ M1(C) and S1 = {α1, α2, · · · , αk}, S2 = {β1, β2},
where α1, α2, · · · , αk, β1, β2 are k+ 2 distinct non zero complex constants satis-
fying k > 3l+2Γ2+3Γ1+4 > (2Γ1+ l). If f, g share S1 and S2 IM, then f ≡ g,
provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2

and f is non-integer finite order.
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Proof of Theorem 3.1. Let F = f lP (f) and G = glP (g), where P (z) is
defined as in eqn (1). Clearly F,G share 1 IM as f, g share S1 IM. From Lemma
2.1, we obtain

T (r, F ) = (l + k)T (r, f) + S(r, f); (2)
T (r,G) = (l + k)T (r, g) + S(r, g) (3)

Let H ̸≡ 0. Then by Lemma 2.3, we have
T (r, F ) ≤ N2(r, 0; f

l) +N2(r, 0;P (f)) + 2N(r, 0; gl) +N2(r, 0;P (g))+

2N(r, 0; f l) + 2N(r, 0;P (f)) +N(r, 0; gl) +N(r, 0;P (g))

+ S(r, f) + S(r, g).

(4)

Now
N2(r, 0;P (f)) ≤ Γ2N(r, 0, f),

N(r, 0;P (f)) ≤ Γ1N(r, 0, f),

T (r, F ) ≤ (2l + 2) + (Γ2 + 2Γ1)N(r, 0; f) + 2lN(r, 0; g) + (Γ2 + Γ1)N(r, 0; g)+

2N(r, 0; f) + 2N(r, 0; g) + S(r, f) + S(r, g).

Substituting these values in 4, we get
T (r, F ) ≤ {(2l + 2) + (Γ2 + 2Γ1)}T (r, f) + {(2l + 1) + (Γ2 + Γ1)}T (r, g)

+ S(r, f) + S(r, g).
(5)

Similarly,
T (r,G) ≤ {(2l + 2) + (Γ2 + 2Γ1)}T (r, g) + {(2l + 1) + (Γ2 + Γ1)}T (r, f)

+ S(r, f) + S(r, g).
(6)

From (2˘),(3),(5) and (6), we obtain
(l+k){T (r, f)+T (r, g)} ≤ (4l+3+2Γ2+3Γ1){T (r, f)+T (r, g)}+S(r, f)+S(r, g),
which is a contradiction as k > 3l + 2Γ2 + 3Γ1 + 3. Hence H ≡ 0.
Let T (r) = max{T (r, F ), T (r,G)}. Now
N(r, 0;F ) +N(r, 0;G) ≤ (Γ1 + 1)N(r, 0; f) + (Γ1 + 1)N(r, 0; g)

≤ (Γ1 + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

=
(Γ1 + 1)

(l + k)
{T (r, F ) + T (r,G)}+ S(r, F ) + S(r,G)

≤ 2Γ1 + 1

l + k
T (r) + o{T (r)}.

As k > 3l + 2Γ2 + 3Γ1 + 4 > (2Γ1 + 1), using Lemma 2.2 we obtain either
F ≡ G or F.G ≡ 1. Let F.G ≡ 1. Then P (f).P (g) ≡ 1. As g ∈ M1(C), we
have P (g) ∈ M1(C). Hence P (f) has at most finitely many zeros. Therefore
P (f) = η1(z)e

ς1(z), where η1(z) is a rational function and ς1(z) is an entire
function, which is a contradiction by Lemma 2.5 as the order of f is neither an
integer not infinity. Similarly, if we consider the case when P (g) has at most
finitely many zeros, we arrive at a contradiction as λ(g) = λ(f), by Lemma 2.4.
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Hence the case F.G ≡ 1 can not occur.
If F ≡ G, then we have P (f) ≡ P (g), which gives f lP (f) ≡ glP (g) for l = 0,
we have

(f(z)− α1)(f(z)− α2) · · · (f(z)− αk)

(g(z)− α1)(g(z)− α2) · · · (g(z)− αk)
≡ 1. (7)

From (7) and the assumption
(β1 − α1)

2(β1 − α2)
2 · · · (β1 − αk)

2 ̸= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)
2,

we obtain that f(z) = β1 if and only if g(z) = β1 since f and g share S2 IM.
Similarly, we see that f(z) = β2 if and only if g(z) = β2. Consequently, we have
f and g share β1 and β2 IM. Again, from 7 we see that f and g share β1, β2
and ∞ CM. Noting that the order of f is neither an integer nor infinity, the
conclusion of the theorem follows from Lemma 2.4 and Lemma 2.6.

Theorem 3.2. Let S1 and S2 be stated as in theorem 3.1 with k > 3l + 2Γ2 +
3Γ1 + 4 > (2Γ1 + l). If M2(C) denote the subclass of meromorphic functions
of non-integer finite order in M1(C) then the sets S1 and S2 are the URS of
meromorphic functions in M2(C), provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)
2 ̸= (β2 − α1)

2(β2 − α2)
2 · · · (β2 − αk)

2.

Proof of Theorem 3.2 If f, g share S1 and S2 CM, then f, g certainly
share S1 and S2 IM, which satisfies the conditions of Theorem 3.1 and hence the
conclusion follows. Here we omit the details.
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