J. Appl. Math. & Informatics Vol. **36**(2018), No. 1 - 2, pp. 121 - 133 http://dx.doi.org/10.14317/jami.2018.121

GENERALIZATION OF MEROMORPHIC FUNCTIONS SHARING A NONZERO POLYNOMIAL WITH FINITE WEIGHT

HARINA P. WAGHAMORE*, HUSNA V. AND NAVEENKUMAR S. H.

ABSTRACT. The purpose of the paper is to study the meromorphic functions sharing a nonzero polynomial with finite weight. The results of the paper improve and generalize the recent results due to Pulak Sahoo and Sajahan Seikh [9].

AMS Mathematics Subject Classification : 30D35. *Key words and phrases* : Nevanlinna theory, meromorphic function, sharing values.

1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C} . If for some $a \in \mathbb{C} \cup \{\infty\}$, f - a and g - a have the same set of zeros with the same multiplicities, we say that f and g share the value a CM(counting multiplicities), and if we do not consider the multiplicities then f and g are said to share the value a IM(ignoring multiplicities).

We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [4, 13]. A meromorphic function a is said to be a small function of f provided that T(r, a) = S(r, f), that is T(r, a) = o(T(r, f)) as $r \to \infty$, outside of a possible exceptional set of finite linear measure.

In 1959, W.K.Hayman (see [4], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and $n \geq 3$ is an integer. Then $f^n f' = 1$ has infinitely many solutions.

Received September 16, 2017. Revised November 20, 2017. Accepted December 13, 2017. *Corresponding author.

^{© 2018} Korean SIGCAM and KSCAM.

Corresponding to Theorem A, C.C.Yang and H.X.Hua [13] proved the following result.

Theorem B. Let f and g be two non-constant meromorphic functions, $n \ge 11$ be a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or $f \equiv tg$ for a constant t such that $t^{n+1} = 1$.

In 2002, Fang and Qiu [2] proved the following theorem.

Theorem C. Let f and g be two non-constant meromorphic functions, and $n \in N$ such that $n \geq 11$. If $f^n f' - z$ and $g^n g' - z$ share 0 CM, then either $f(z) = c_1 e^{cz^2}$, $g(z) = c_2 e^{-cz^2}$, where c_1, c_2 and c are three nonzero complex numbers satisfying $4(c_1c_2)^{n+1}c^2 = -1$ or f = tg for a complex number t such that $t^{n+1} = 1$.

In 2010, X.M.Li and Gao [8] proved the following result.

Theorem D. Let f and g be two transcendental meromorphic functions, let $n \ge 11$ be a positive integer, and let $P \not\equiv 0$ be a polynomial with its degree $\gamma_p \le 11$. If $f^n f' - P$ and $g^n g' - P$ share 0 CM, then either f = tg for a complex number t satisfying $t^{n+1} = 1$, or $f(z) = c_1 e^{CQ}$, $g(z) = c_2 e^{-CQ}$, where c_1, c_2 and c are three nonzero complex numbers satisfying $(c_1 c_2)^{n+1} c^2 = -1$, Q is a polynomial satisfying $Q = \int_0^{z_0} P(\eta) \, \mathrm{d}\eta$.

We now explain the notation of weighted sharing of values, introduced by I.Lahiri [5, 6].

Definition 1. [5, 6] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k+1 times if m > k. If $E_k(a; f) = E_k(a, g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_0 is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_0 is an a-point of f with multiplicity m(>k) if and only if it is an a-point of g with multiplicity n(>k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Recently, Pulak Sahoo and S. Seikh[9] proved the following theorems.

Theorem E. Let f and g be two transcendental meromorphic functions, let n, k be two positive integers such that $n \ge 3k + 9$, and let $P \ne 0$ be a polynomial with its degree $\gamma_p \le n - 1$. Let $(f^n)^{(k)} - P$ and $(g^n)^{(k)} - P$ share (0, 2). Then (i) if k = 1, either $f \equiv tg$ for a complex number t satisfying $t^n = 1$ or $f = c_1 e^{CQ}$ and $g = c_2 e^{-CQ}$ where c_1, c_2 and c are three non-zero complex number satisfying

 $(c_1c_2)^n c^2 = -1$, Q is a polynomial satisfying $Q = \int_0^z P(\eta) \, \mathrm{d}\eta$. (ii) if $k \ge 2$, either $(f^n)^{(k)}(g^n)^{(k)} = P^2$ or $f \equiv tg$ for a complex number t satisfying $t^n = 1$.

Theorem F. Let f and g be two transcendental meromorphic functions, let n, m, k be three positive integers, and let $P \neq 0$ be a polynomial. If $(f^n(f - 1)^m)^{(k)} - P$ and $(g^n(g-1)^m)^{(k)} - P$ share (0, 2) then each of the following hold: (i) When $m = 1, n \geq 3k + 12$ and $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n}$, then either $(f^n(f - 1)^m)^{(k)}(g^n(g-1)^m)^{(k)} = P^2$ or f = g.

(ii) When $m \ge 2$ and $n \ge 3k + m + 11$, then either $(f^n(f-1)^m)^{(k)}(g^n(g-1)^m)^{(k)} = P^2$ or f = g or f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m - \omega_2^n (\omega_2 - 1)^m$. The possibility $(f^n(f-1)^m)^{(k)}(g^n(g-1)^m)^{(k)} = P^2$ does not arise for k = 1.

In this paper we will prove one theorem which will improve and generalizes Theorems E and F.

Theorem 1. Let f and g be two transcendental meromorphic functions, let p(z) be a non-zero polynomial with $deg(p) \leq n-1$, $n(\geq 1)$, $k(\geq 1)$ and $m(\geq 0)$ be three integers such that n > 3k+m+8. Let $(f^n P(f))^{(k)} - p$ and $(g^n P(g))^{(k)} - p$ share (0, 2) and f and g share ∞IM then one of the following three cases hold: (i) $f(z) \equiv tg(z)$ for a constant t such that $t^d = 1$, where d = GCD(n+m,...,n+m-i,...,n), $a_{m-i} \neq 0$ for some i = 1, 2, ..., m.

(ii) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(\omega_1, \omega_2) = \omega_1^n(a_m\omega_1^m + a_{m-1}\omega_1^{m-1} + \ldots + a_0) - \omega_2^n(a_m\omega_2^m + a_{m-1}\omega_2^{m-1} + \ldots + a_0)$. (iii) P(z) reduces to a nonzero monomial namely, namely $P(z) = a_i z^i \neq 0$

(iii) P(z) reduces to a nonzero monomial namely, namely $P(z) = a_i z^i \neq 0$ for some $i \in \{0, 1, 2, ..., m\}$; if p(z) is not a constant, then $f = c_1 e^{cQ(z)}$, $g = c_2 e^{-cQ(z)}$, where $Q(z) = \int_0^z p(z) dz$, $c_1, c_2, c \in \mathbb{C}$ such that $a_i^2 (c_1 c_2)^{n+i} [(n + i)c]^2 = -1$, if $p(z) = b(\neq 0)$, then $f = c_3 e^{cz}$, $g = c_4 e^{-cz}$, where $c_3, c_4, c \in \mathbb{C}$ such that $(-1)^k a_i^2 (c_3 c_4)^{n+i} [(n + i)c]^{2k} = b^2$.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in \mathbb{C} . We denote by H the function as follows:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right).$$
 (1)

Lemma 1.[4] Suppose that f is a non-constant meromorphic function, $k \ge 2$ is an integer. If

$$N(r,\infty;f) + N(r,0;f) + N(r,0;f^{(k)}) = S(r,f'/f),$$

then $f = e^{az+b}$, where $a \neq 0, b$ are constants.

Lemma 2.[3] Let f(z) be a non-constant entire function and let $k \ge 2$ be a positive integer. If $f(z)f^{(k)}(z) \ne 0$, then $f(z) = e^{az+b}$, where $a \ne 0, b$ are constants.

Lemma 3.[3] Let f be a non-constant meromorphic function and let k be a positive integer. Suppose that $f^{(k)} \neq 0$, then

$$N(r, 0; f^{(k)}) \le N(r, 0; f) + k\overline{N}(r, \infty; f) + S(r, f).$$

Lemma 4.[14] Let $f_j(j = 1, 2, 3)$ be a meromorphic and f_1 be non-constant. Suppose that

$$\sum_{j=1}^{3} f_j \equiv 1$$

and

$$\sum_{j=1}^{3} N(r,0;f_j) + 2\sum_{j=1}^{3} \overline{N}(r,\infty;f_j) < (\lambda + o(1))T(r),$$

as $r \to +\infty$, $r \in I$, $\lambda < 1$ and $T(r) = max_{1 \le j \le 3}T(r, f_j)$. Then $f_2 \equiv 1$ or $f_3 \equiv 1$.

Lemma 5.[12] Let f be a nonconstant meromorphic function and let $a_n(z) \neq 0$, $a_{n-1}(z), ..., a_0(z)$ be meromorphic functions such that $T(r, a_i(z)) = S(r, f)$ for i = 0, 1, 2, ...n. Then

 $T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0) = nT(r, f) + S(r, f).$

Lemma 6.[16] Let f be a non-constant meromorphic function, and $p, k \in N$. Then

$$N_p(r,0;f^{(k)}) \le T(r,f^k) - T(r,f) + N_{p+k}(r,0;f) + S(r,f),$$
(2)

$$N_p(r,0;f^{(k)}) \le k\overline{N}(r,\infty;f) + N_{p+k}(r,0;f) + S(r,f).$$
(3)

Lemma 7.[7] If $N(r, 0; f^{(k)} | f \neq 0)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity, then

$$N(r,0;f^{(k)} \mid f \neq 0) \le k\overline{N}(r,\infty;f) + N(r,0;f \mid < k) + k\overline{N}(r,0;f \mid \ge k) + S(r,f).$$

Lemma 8. ([15], Lemma 6) If $H \equiv 0$, then F, G share 1 CM. If further F, G share ∞ IM then F, G share ∞ CM.

Lemma 9.[17] Let f, g be non-constant meromorphic functions, let n, k be two positive integers with n > k+2, and let $P(w) = a_m w^m + a_{m-1} w^{m-1} + ... + a_1 w + a_0$ be a non zero polynomial. Let $\alpha \neq 0, \infty$ be a small function with respect to f with finitely many zeros and poles. If $[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} \equiv \alpha^2$, f and g share ∞IM , then P(w) is reduced to a nonzero monomial, namely $P(w) = a_i w^i \neq 0$ for some $i \in \{0, 1, ..., m\}$.

Lemma 10. Let f, g be two transcendental meromorphic functions and let p(z) be a non-zero polynomial with $deg(p) \leq n-1$, where n and k be two positive integers such that n > k. Let $[f^n]^{(k)} - p, [g^n]^{(k)} - p$ share 0 CM and f, g share ∞ IM. Now when $[f^n]^{(k)}[g^n]^{(k)} \equiv p^2$,

(i) if p(z) is not a constant, then $f(z) = c_1 e^{cQ(z)}$, $g(z) = c_2 e^{-cQ(z)}$ where

 $\begin{array}{l} Q(z) = \int_0^z p(t) \, \mathrm{d}t, \, c_1, c_2, c \in \mathbb{C} \text{ such that } (nc)^2 (c_1 c_2)^n = -1, \\ (\mathrm{ii}) \text{ if } p(z) \text{ is a non-zero constant } b, \text{ then } f(z) = c_3 e^{dz}, \, g(z) = c_4 e^{-dz}, \text{ where } c_3, c_4 \text{ and } d \text{ are constants such that } (-1)^k (c_3 c_4)^n (nd)^{2k} = b^2. \end{array}$

Proof: Suppose

$$(f^n)^k (g^n)^k \equiv p^2. \tag{4}$$

Since f and g share ∞ IM, (4) one can easily say that f and g are transcendental entire functions. We consider the following cases.

Case 1. Let $deg(p(z)) = l \ge 1$. Since n > k, it follows that N(r, 0; f) = O(logr) and N(r, 0; g) = O(logr). Let

$$F_1 = \frac{(f^n)^{(k)}}{p} \quad and \quad G_1 = \frac{(g^n)^{(k)}}{p}.$$
 (5)

From (4) we get

$$F_1 G_1 \equiv 1. \tag{6}$$

If $F_1 \equiv cG_1$, where c is a non-zero constant, then by (6), F_1 is a constant and so f is a polynomial, which contradicts our assumption. Hence $F_1 \not\equiv G_1$. Let

$$\phi = \frac{[f^n]^{(k)} - p}{[g^n]^{(k)} - p}.$$
(7)

We deduce from (7) that

$$\phi \equiv e^{\beta},\tag{8}$$

where β is an entire function.

Let $f_1 = F_1$, $f_2 = -e^{\beta}G_1$ and $f_3 = e^{\beta}$. Here f_1 is transcendental. Now from (8), we have $f_1 + f_2 + f_3 \equiv 1$.

Hence by Lemma 3, we get

$$\sum_{j=1}^{3} N(r,0;f_j) + 2\sum_{j=1}^{3} \overline{N}(r,\infty;f_j) \le N(r,0;F_1) + N(r,0;e^{\beta}G_1) + O(logr) \le (\lambda + o(1))T(r),$$

as $r \to +\infty$, $r \in I$, $\lambda < 1$ and $T(r) = max_{1 \leq j \leq 3}T(r, f_j)$. So by Lemma 4, we get either $e^{\beta}G_1 \equiv -1$ or $e^{\beta} \equiv 1$. But here the only possibility is that $e^{\beta}G_1 \equiv -1$, i.e, $[g^n]^{(k)} \equiv -e^{-\beta}p(z)$ and so from (4), we obtain

$$F_1 \equiv e^{\gamma_1} G_1,$$

i.e., $[f^n]^{(k)} \equiv e^{\gamma_1} [g^n]^{(k)},$

where γ_1 is a non-constant entire function. Now from (4) we get

$$(f^n)^{(k)} \equiv c e^{\frac{1}{2}\gamma_1} p(z) , \ (g^n)^{(k)} \equiv c e^{\frac{-1}{2}\gamma_1} p(z),$$
 (9)

where $c = \pm 1$. Since N(r, 0; f) = O(logr) and N(r, 0; g) = O(logr), so we can take

$$f(z) = h_1(z)e^{\alpha(z)}$$
, $g(z) = h_2(z)e^{\beta(z)}$ (10)

where h_1 and h_2 are non-zero polynomials and α, β are two non-constant entire functions.

We deduce from (4) and (10) that either both α and β are transcendental entire functions or both are polynomials.

We consider the following cases:

Subcase 1.1: Let $k \geq 2$.

First we suppose both α and β are transcendental entire functions.

Let $\alpha_1 = \alpha' + \frac{h'_1}{h_1}$ and $\beta_1 = \beta' + \frac{h'_2}{h_2}$. Clearly both α_1 and β_1 are transcendental functions.

Note that

Note that $S(r, n\alpha_1) = S(r, \frac{(f^n)'}{f^n}), S(r, n\beta_1) = S(r, \frac{(g^n)'}{g^n}).$ Moreover we see that $N(r, 0; (f^n)^{(k)}) \leq N(r, 0; p^2) = O(logr) \text{ and } N(r, 0; (g^n)^{(k)}) \leq N(r, 0; p^2) = O(logr).$

From these and using (10) we have

$$N(r,\infty;f^n) + N(r,0;f^n) + N(r,0;(f^n)^{(k)}) = S(r,n\alpha_1) = S(r,\frac{(f^n)'}{f^n})$$
(11)

and

$$N(r,\infty;g^n) + N(r,0;g^n) + N(r,0;(g^n)^{(k)}) = S(r,n\beta_1) = S(r,\frac{(g^n)'}{g^n}).$$
 (12)

Then from (11), (12) and Lemma 1 we must have

$$f(z) = e^{az+b}, \ g(z) = e^{cz+d},$$
 (13)

where $a \neq 0, b, c \neq 0$ and d are constants. But these types of f and g do not satisfy relation (4).

Next we suppose α and β are both polynomials. Also from (4) we get $\alpha + \beta \equiv c$ i.e., $\alpha' \equiv -\beta'$. Therefore $deg(\alpha) = deg(\beta)$. We deduce from (10) that

$$(f^{n})^{k} \equiv Ah_{1}^{n-k}[h_{1}^{k}(\alpha')^{k} + P_{k-1}(\alpha', h_{1}')]e^{n\alpha} \equiv A_{1}pe^{n\alpha}$$
(14)

and

$$(g^{n})^{k} \equiv Bh_{2}^{n-k}[h_{2}^{k}(\beta')^{k} + Q_{k-1}(\beta', h_{2}')]e^{n\beta} \equiv B_{1}pe^{n\beta}$$
(15)

where A, B, A_1, B_1 are non-zero constants, $P_{k-1}(\alpha', h'_1)$ and $Q_{k-1}(\beta', h'_2)$ are differential polynomials in α', h'_1 and β', h'_2 respectively. By virtue of polynomial p, from (14) and (15) we conclude that both h_1 and h_2 are nonzero constants. So we can rewrite f and g as follows:

$$f = e^{\gamma_2}, g = e^{\delta_2} \tag{16}$$

where $\gamma_2 + \delta_2 \equiv C$ and $deg(\gamma_2) = deg(\delta_2)$. If $deg(\gamma_2) = deg(\delta_2) = 1$, then we again get a contradiction from (4). Next we suppose $deg(\gamma_2) = deg(\delta_2) \geq 2$.

We deduce from (16) that

$$\begin{split} (f^{n})' &= n\gamma_{2}e^{n\gamma_{2}} \\ (f^{n})'' &= [n^{2}(\gamma_{2}')^{2} + n\gamma_{2}'']e^{n\gamma_{2}} \\ (f^{n})''' &= [n^{3}(\gamma_{2}')^{3} + 3n^{2}\gamma_{2}'\gamma_{2}'' + n\gamma_{2}''']e^{n\gamma_{2}} \\ (f^{n})^{(iv)} &= [n^{4}(\gamma_{2}')^{4} + 6n^{2}(\gamma_{2}')^{2}\gamma_{2}'' + 3n^{2}(\gamma_{2}'')^{2} + 4n^{2}\gamma_{2}'\gamma_{2}'' + n\gamma_{2}^{(iv)}]e^{n\gamma_{2}} \\ (f^{n})^{(v)} &= [n^{5}(\gamma_{2}')^{5} + 10n^{4}(\gamma_{2}')^{3}\gamma_{2}'' + 15n^{3}\gamma_{2}'(\gamma_{2}'')^{2} + 10n^{3}(\gamma_{2}')^{2}\gamma_{2}''' \\ &+ 10n^{2}\gamma_{2}''\gamma_{2}''' + 5n^{2}\gamma_{2}'\gamma_{2}^{(iv)} + n\gamma_{2}^{(v)}]e^{n\gamma_{2}} \\ & \dots \end{split}$$

$$(f^n)^{(k)} = [n^k (\gamma'_2)^k + K(\gamma'_2)^{k-2} \gamma''_2 + P_{k-2}(\gamma'_2)]e^{n\gamma_2}$$

Similarly, we get

$$(g^{n})^{(k)} = [n^{k}(\delta'_{2})^{k} + K(\delta'_{2})^{k-2}\delta''_{2} + P_{k-2}(\delta'_{2})]e^{n\delta_{2}}$$

= $[(-1)^{(k)}n^{k}(\gamma'_{2})^{k} - K(-1)^{k-2}(\gamma'_{2})^{k-2}\gamma''_{2} + P_{k-2}(-\gamma'_{2})]e^{n\delta_{2}},$

where K is a suitably positive integer and $P_{k-2}(\gamma'_2)$ is a differential polynomial in γ'_2 .

Since $deg(\gamma_2) \ge 2$, we observe that $deg((\gamma'_2)^{(k)}) \ge kdeg(\gamma'_2)$ and so $(\gamma'_2)^{k-2}\gamma''_2$ is either a non-zero constant or $deg((\gamma'_2)^{k-2}\gamma''_2) \ge (k-1)deg(\gamma'_2) - 1$. Also we see that

$$deg((\gamma'_{2})^{k}) > deg((\gamma'_{2})^{k-2}\gamma''_{2}) > deg(P_{k-2}(\gamma'_{2})) \quad (or \ deg(P_{k-2}(-\gamma'_{2}))).$$

Since $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 0 CM, the polynomials $n^k (\gamma'_2)^k + K(\gamma'_2)^{k-2} \gamma''_2 + P_{k-2}(\gamma'_2)$ and $(-1)^k n^k (\gamma'_2)^k - K(-1)^{k-2} (\gamma'_2)^{k-2} \gamma''_2 + P_{k-2}(\gamma'_2)^k - K(-1)^{k-2} (\gamma'_2)^k - K(P_{k-2}(-\gamma'_2)$ must be identical but this is impossible for $k \ge 2$. Actually the terms $n^k(\gamma'_2)^k + K(\gamma'_2)^{k-2}\gamma''_2$ and $(-1)^k n^k(\gamma'_2)^k - K(-1)^{k-2}(\gamma'_2)^{k-2}\gamma''_2$ cannot be identical for k > 2.

Subcase 1.2. Let k = 1. Now from (4) we get

$$f^{n-1}f'g^{n-1}g' \equiv p_1^2,$$
(17)

where $p_1^2 = \frac{1}{n^2} p^2$.

First we suppose that both α and β are transcendental entire functions. Let h = fg. Clearly h is a transcendental entire function. Then from (17) we get

$$\left(\frac{g'}{g} - \frac{1}{2}\frac{h'}{h}\right)^2 \equiv \frac{1}{4}\left(\frac{h'}{h}\right)^2 - h^{-n}p_1^2.$$
 (18)

Let

$$\alpha_2 = \frac{g'}{g} - \frac{1}{2}\frac{h'}{h}.$$

From (18) we get

$$\alpha_2^2 = \frac{1}{4} \left(\frac{h'}{h}\right)^2 - h^{-n} p_1^2.$$
(19)

First we suppose $\alpha_2 \equiv 0$. Then we get $h_1^{-n} p_1^2 \equiv \frac{1}{4} (\frac{h'}{h})^2$ and so T(r,h) = S(r,h), which is impossible. Next we suppose that $\alpha_2 \not\equiv 0$. Differentiating (19) we get

$$2\alpha_2 \alpha'_2 \equiv \frac{1}{2} \frac{h'}{h} \left(\frac{h'}{h}\right)' + nh'h^{-n-1}p_1^2 - 2h^{-n}p_1p_1'$$

Applying (19) we obtain

$$h^{-n}\left(-n\frac{h'}{h}p_1^2 + 2p_1p_1' - 2\frac{\alpha_2'}{\alpha_2}p_1^2\right) \equiv \frac{1}{2}\frac{h'}{h}\left(\left(\frac{h'}{h}\right)' - \frac{h'}{h}\frac{\alpha_2'}{\alpha_2}\right).$$
 (20)

First we suppose that $-n\frac{h'}{h}p_1^2 + 2p_1p_1' - 2\frac{\alpha_2'}{\alpha_2}p_1^2 \equiv 0$. Then there exist a non-zero constant c such that $\alpha_2^2 \equiv ch^{-n}p_1^2$ and so from (19) we get

$$(c+1)h^{-n}p_1^2 \equiv \frac{1}{4}\left(\frac{h'}{h}\right)^2$$

If c = -1, then *h* will be a constant. If $c \neq -1$, then we have T(r, h) = S(r, h), which is impossible. Next we suppose that $-n\frac{h'}{h}p_1^2 + 2p_1p_1' - 2\frac{\alpha_2'}{\alpha_2}p_1^2 \neq 0$. Then by (20) we have

$$nT(r,h) = n m(r,h) \leq m \left(r, h^n \frac{1}{2} \frac{h'}{h} \left(\left(\frac{h'}{h}\right)' - \frac{h'}{h} \frac{\alpha'_2}{\alpha_2} \right) \right) + m \left(r, \frac{1}{\frac{1}{2} \frac{h'}{h} \left(\left(\frac{h'}{h}\right)' - \frac{h'}{h} \frac{\alpha'_2}{\alpha_2} \right) \right) \right) + O(1)$$

$$\leq T \left(r, \frac{1}{2} \frac{h'}{h} \left(\left(\frac{h'}{h}\right)' - \frac{h'}{h} \frac{\alpha'_2}{\alpha_2} \right) \right) + m \left(r, n \frac{h'}{h} p_1^2 - 2p_1 p_1' + 2 \frac{\alpha'_2}{\alpha_2} p_1^2 \right)$$

$$\leq \overline{N}(r, 0; \alpha_2) + S(r, h) + S(r, \alpha_2)$$
(21)

From (19) we get $T(r, \alpha_2) < \frac{1}{2}nT(r, h) + S(r, h)$.

Now from (21) we get $\frac{1}{2}nT(r,h) \leq S(r,h)$, which is impossible.

Thus α and β are both polynomials. Also from (4) we can conclude that $\alpha(z) + \beta(z) \equiv C$ for a constant C and so $\alpha'(z) + \beta'(z) \equiv 0$. We deduce from (4) that

$$[f^{n}]' \equiv n[h_{1}^{n}\alpha' + h_{1}^{n-1}h_{1}']e^{n\alpha} \equiv p(z)e^{n\alpha}$$
(22)

and

$$[g^n]' = n[h_2^n\beta' + h_2^{n-1}h_2']e^{n\beta} \equiv p(z)e^{n\beta}.$$
(23)

Since $deg(p) \leq n-1$ from (22) and (23) we conclude that both h_1 and h_2 are nonzero constants. So we can rewrite f and g as follows:

$$f = e^{\gamma_2} \quad , \quad g = e^{\delta_2}. \tag{24}$$

Now from (4) we get

$$n^2 \gamma_2' \delta_2' e^{n(\gamma_2 + \delta_2)} \equiv p^2.$$
⁽²⁵⁾

Also from (25) we can conclude that $\gamma_2(z) + \delta_2(z) \equiv C$ for a constant C and so $\gamma'_2(z) + \delta'_2(z) \equiv 0$.

Thus from (25) we get $n^2 e^{nC} \gamma'_2 \delta'_2 \equiv p^2(z)$. By computation we get

$$\gamma_2' = cp(z), \delta_2' = -cp(z). \tag{26}$$

Hence

$$a_2 = cQ(z) + b_1$$
, $\delta_2 = -cQ(z) + b_2$, (27)

where $Q(z) = \int_0^z p(z) dz$ and b_1, b_2 are constants. Finally we take f and g as $f(z) = c_1 e^{cQ(z)}, g(z) = c_2 e^{-cQ(z)}$, where c_1, c_2 and c are constants such that $(nc)^2(c_1c_2)^n = -1$.

Case 2. Let p(z) be a nonzero constant b. In this case we see that f and g have no zeros and so we can take f and g as follows:

$$f = e^{\alpha}, \ g = e^{\beta}, \tag{28}$$

where $\alpha(z), \beta(z)$ are two non-constant entire functions. We now consider the following two subcases:

Subcase 2.1. Let $k \ge 2$. We see that $N(r, 0; [f^n]^k) = 0$. From this and using (28) we have

$$f^{n}(z)[f^{n}(z)]^{(k)} \neq 0.$$
 (29)

Similarly we have

$$g^{n}(z)[g^{n}(z)]^{(k)} \neq 0.$$
 (30)

Then from (29), (30) and Lemma 2 we must have

$$f = e^{az+b}$$
, $g = e^{cz+d}$, (31)

where $a \neq 0, b, c \neq 0$ and d are constants.

Subcase 2.2. Let k = 1. Considering Subcase 1.2 one can easily get

$$f = e^{az+b} , \quad g = e^{cz+d}, \tag{32}$$

where $a \neq 0, b, c \neq 0$ and d are constants. Finally we can take f and g as $f = c_3 e^{dz}, g = c_4 e^{-dz}$, where c_3, c_4 and d are non-zero constants such that $(-1)^k (c_3 c_4)^n (nd)^{2k} = b^2$. This completes the proof.

Lemma 11. Let f and g be two transcendental meromorphic functions, let p(z) be a nonzero polynomial with $deg(p) \leq n-1$, let n and k be two positive integers with n > k+2. Let P(w) be defined as in Lemma 9 and $(f^n P(f))^{(k)}, (g^n P(g))^{(k)}$ share p CM and also f and g share ∞ IM. Suppose that $[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} \equiv$

 p^2 , then P(z) reduces to a nonzero monomial namely, namely $P(z) = a_i z^i \neq 0$ for some $i \in \{0, 1, ..., m\}$; if p(z) is not a constant, then $f = c_1 e^{cQ(z)}$, $g = c_2 e^{-cQ(z)}$, where $Q(z) = \int_0^z p(z) \, dz$, $c_1, c_2, c \in \mathbb{C}$ such that $a_i^2 (c_1 c_2)^{n+i} [(n+i)c]^2 = -1$, if $p(z) = b(\neq 0)$, then $f = c_3 e^{cz}$, $g = c_4 e^{-cz}$, where $c_3, c_4, c \in \mathbb{C}$ such that $(-1)^k a_i^2 (c_3 c_4)^{n+i} [(n+i)c]^{2k} = b^2$.

Proof: The proof of lemma follows from Lemmas 9 and 10.

3. Proof of the Theorem

Proof of Theorem 1.

Let $F = \frac{[f^n P(f)]^{(k)}}{p}$ and $G = \frac{[g^n P(g)]^{(k)}}{p}$. It follows that F and G share (1, 2) except for the zeros of p.

Case 1. Let $H \neq 0$. From (1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1-points of F and G whose multiplicities are different,(iii) poles of F and G, (iv) zeros of F'(G') which are not the zeros of F(F-1)(G(G-1)). Since H has only simple poles we get

$$N(r,\infty;H) \leq \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) + \overline{N}_*(r,1;F,G) + \overline{N}(r,0;F|\geq 2) + \overline{N}(r,0;G|\geq 2) + \overline{N}_0(r,0;F') + \overline{N}_0(r,0;G')$$
(33)

where $\overline{N}_0(r, 0; F')$ is the reduced counting function of those zeros of F' which are not the zeros of F(F-1) and $\overline{N}_0(r, 0; G')$ is similarly defined. Here we see that

$$N(r,1;F \mid = 1) \le N(r,0;H) \le N(r,\infty;H) + S(r,F) + S(r,G).$$
(34)

Note that $\overline{N}_*(r, 1; F, G) = 0$ and $\overline{N}_*(r, \infty; F, G) \leq \overline{N}(r, \infty; f)$. Now in view of Lemma 7 we get

$$\overline{N}_{0}(r,0;G') + \overline{N}(r,1;F|\geq 2) + \overline{N}_{*}(r,1;F,G)$$

$$\leq \overline{N}_{0}(r,0;G') + \overline{N}(r,1;F|\geq 2) + \overline{N}(r,1;F|\geq 3)$$

$$= \overline{N}_{0}(r,0;G') + \overline{N}(r,1;G|\geq 2) + \overline{N}(r,1;G|\geq 3)$$

$$\leq \overline{N}_{0}(r,0;G') + N(r,1;G) - \overline{N}(r,1;G)$$

$$\leq N(r,0;G' \mid G \neq 0) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;g) + S(r,g)$$
(35)

Hence using (33),(34),(35), Lemmas 5 and 6 we get from second fundamental theorem

$$(n+m)T(r,f) \leq T(r,F) + N_{k+2}(r,0;f^nP(f)) - N_2(r,0;F) + S(r,f)$$

$$\leq \overline{N}(r,0;F) + \overline{N}(r,\infty;F) + \overline{N}(r,1;F) + N_{k+2}(r,0;f^nP(f))$$

$$- N_2(r,0;F) - N_0(r,0;F')$$

$$\begin{aligned} (n+m)T(r,f) &\leq \overline{N}(r,0;F) + \overline{N}(r,\infty;F) + N(r,1;F \mid = 1) + \overline{N}(r,1;F \mid \geq 2) \\ &+ N_{k+2}(r,0;f^{n}P(f)) - N_{2}(r,0;F) - N_{0}(r,0;F') + S(r,f) \\ &\leq 2\overline{N}(r,\infty;f) + 2\overline{N}(r,\infty;g) + N_{2}(r,0;F) + N_{2}(r,0;G) \\ &+ N_{k+2}(r,0;f^{n}P(f)) - N_{2}(r,0;F) + S(r,f) + S(r,g) \\ &\leq 2\overline{N}(r,\infty;f) + 2\overline{N}(r,\infty;g) + N_{k+2}(r,0;f^{n}P(f)) + k\overline{N}(r,\infty;g) \\ &+ N_{k+2}(r,0;g^{n}P(g)) + S(r,f) + S(r,g) \\ &\leq (k+m+4)\overline{N}(r,\infty;f) + (2k+m+4)T(r,g) + S(r,f) + S(r,g) \\ &\leq (k+m+4)T(r,f) + (2k+m+4)T(r,g) + S(r,f) + S(r,g) \\ &\leq (3k+2m+8)T(r) + S(r). \end{aligned}$$
(36)

In a similar way we can obtain

$$(n+m)T(r,g) \le (3k+8+2m)T(r)+S(r),$$
(37)

where $T(r) = max \{T(r, f), T(r, g)\}$.

Combining (36) and (37) we see that

$$(n-3k-8-m)T(r) \le S(r).$$
 (38)

Since n > 3k + m + 8, (38) leads to a contradiction.

Case 2. Let $H \equiv 0$. Then by Lemma 11 (see [[10], p.166]) We have either

$$f^{n}P(f)]^{(k)}[g^{n}P(g)]^{(k)} \equiv p^{2},$$
(39)

or

$$f^n P(f) \equiv g^n P(g). \tag{40}$$

From (40) we get

$$f^{n}(a_{m}f^{m} + a_{m-1}f^{m-1} + \dots + a_{0}) \equiv g^{n}(a_{m}g^{m} + a_{m-1}g^{m-1} + \dots + a_{0}).$$
(41)

Let h = f/g. If h is a constant, then substituting f = gh into (41) we deduce that

$$a_m g^{n+m} (h^{n+m} - 1) + a_{m-1} g^{n+m-1} (h^{n+m-1} - 1) + \dots + a_0 g^n (h^n - 1) \equiv 0,$$

which implies $h^d = 1$, where $d = GCD(n + m, ..., n + m - i, ...n), a_{m-i} \neq 0$ for some i = 0, 1, ..., m. Thus $f \equiv tg$ for a constant t such that $t^d = 1$, where $d = GCD(n + m, ..., n + m - i, ...n), a_{m-i} \neq 0$ for some i = 0, 1, ...m. If h is not a constant, then we know by (41) that f and g satisfying the algebraic equation R(f,g) = 0, where $R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + ...a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + ... + a_0)$. Remaining part of the theorem follows from (39) and Lemma 11. This completes the proof of the theorem.

Acknowledgment

The second author (HV) is grateful to the University Grants Commission (UGC),

New Delhi, India for supporting her research work by providing her with a Maulana Azad National Fellowship (MANF).

References

- A. Banerjee and H. Goutam, Certain non-linear differential polynomials having common poles sharing a non zero polynomial with finite weight, Journal of Classical Analysis 6 Number 2 (2015), 167-190.
- M.L. Fang and H. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl 268 (2002), no. 2, 426-439.
- G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, (German) Math. Z. 149 (1976), no. 1, 29-36.
- 4. W.K. Hayman, *Meromorphic functions*, Oxford Mathematical Monographs Clarendon Press, Oxford (1964) xiv+191 pp.
- I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
- I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl 46 (2001), no. 3, 241-253.
- I. Lahiri and D. Shyamali, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26 (2003), no. 1, 95-100.
- X.M. Li and L. Gao, Meromorphic functions sharing a nonzero polynomial CM, Bull. Korean Math. Soc. 47 (2010), no. 2, 319-339.
- P. Sahoo and S. Seikh, Meromorphic functions sharing a nonzero polynomial with finite weight, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 2, 253-267.
- S. Majumder, On an open problem of Xiao-Bin Zhang and Jun-Feng Xu, Demonstratio Mathematica 49 (2016), No 2.
- J.F. Xu, F. Lü and H.X. Yi, Fixed-points and uniqueness of meromorphic functions, Comput. Math. Appl. 59 (2010), no. 1, 9-17.
- 12. C.C. Yang, On deficiencies of differential polynomials, II. Math. Z. 125 (1972), 107-112.
- C.C. Yang and X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
- C.C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications 557, Kluwer Academic Publishers Group, Dordrecht, 2003. viii+569 pp. ISBN: 1-4020-1448-1.
- H.X. Yi, Meromorphic functions that share one or two values, II. Kodai Math. J. 22 (1999), no. 2, 264-272.
- Q.C. Zhang, Meromorphic function that shares one small function with its derivative, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 116, 13 pp.
- X.B. Zhang and J.F. Xu, Uniqueness of meromorphic functions sharing a small function and its applications, Comput. Math. Appl. 61 (2011), 722-730.

HARINA P. WAGHAMORE

Associate Professor, Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056,India.

e-mail:harinapw@gmail.com

HUSNA V.

Research Scholar, Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056,India.

e-mail:husnav43@gmail.com, husnav@bub.ernet.in

NAVEENKUMAR S. H.

Research Scholar, Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056,India.

e-mail:naveenkumarsh.220@gmail.com