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Abstract. This paper proves the following results: Let f be a transcendental entire

function, and let k(≥ 2) be a positive integer. If T (r, f) 6= N1)(r, 1/f)+S(r, f), then ff (k)

assumes every finite nonzero value infinitely often. Also the case when f is a transcenden-

tal meromorphic function has been considered and some results are obtained.

1. Sketch of value distribution theory

We first briefly introduce the value distribution theory of meromorphic function
found by R. Nevanlinna and its standard notations as well as some main classic re-
sults(see [4] or [14]).

Definition 1. For every real number x ≥ 0, we define

log+ x =

{
log x, x ≥ 1;
0, 0 ≤ x < 1.

The basic properties of this truncated logarithm can be found in [4] or [14].

Definition 2. Let f(z)(6≡ ∞) be a meromorphic function and a be a complex
value, and let r ∈ (0, +∞). We call, as usual, the following functions:

m(r, f) =
1
2π

∫ 2π

0

log+ |f(reiθ)|dθ,

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) log r,

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) log r,
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T (r, f) = m(r, f) + N(r, f)

the mean value function of f(z); the counting function of poles of f(z); the reduced
counting function of poles of f(z) and the Nevanlinna characteristic function of
f(z), respectively, where the term n(t, f) denotes the number of poles of f(z) inside
of the disc |z| ≤ t, each taken into account according to its multiplicity; by n(0, f)
we denote the multiplicity of poles of f(z) at the origin (n(0, f) = n(0, f) = 0
if f(0) 6= ∞; n(0, f) = 1 if f(0) = ∞); and by n(t, f) we denote the number of
distinct poles of f(z) in |z| ≤ t. Similarly, we can define m(r, 1/(f−a)), N(r, 1/(f−
a)), T (r, 1/(f − a)) · · · , for any finite complex value a.

Now we list two famous theorems founded by R. Nevanlinna(see [4]).

Theorem A (Nevanlinna’s first main theorem). Let f(z) be meromorphic in the
domain |z| < R (≤ +∞), and let a be a finite value. If f(z) 6≡ a, then for r ∈ (0, R)
we have

T (r,
1

f − a
) = T (r, f) + log |cλ|+ ε(a, r),

where cλ is the first nonzero coefficient of the Laurent expansion at the origin of the
function 1

f−a , and satisfying

|ε(a, r)| ≤ log+ |a|+ log 2.

For simplicity, we sometimes write the above formula as follows:

T (r,
1

f − a
) = T (r, f) + O(1).

Theorem B (Nevanlinna’s second main theory). Let f(z) be a nonconst meromor-
phic function, and let a1, a2, · · · , aq be q(≥ 3) pairwise distinct values, one of which
can be infinite. Then

(q − 2)T (r, f) <

q∑

j=1

N

(
r,

1
f − aj

)
−N1(r) + S(r, f),

where

N1(r) = 2N(r, f)−N(r, f ′) + N(r,
1
f ′

),

S(r, f) = m(r,
f ′

f
) +

q∑

j=1

m(r,
f ′

f − aj
) + O(1).

In this article, for every nonconstant meromorphic function f(z), we always
denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)) (r → +∞, r 6∈ E),
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where E denotes a set of r of finite linear measure in the interval (0, +∞), but not
necessarily the same at each occurrence.

Now we can rewrite the Nevanlinna second main theory as the following more
practical form:

Theorem C. Let f(z) be a nonconstant meromorphic function, let q(≥ 3) be an
integer, and let a1 · · · , aq be distinct values, one of which can be infinite. Then

(q − 2)T (r, f) <

q∑

j=1

N

(
r,

1
f − aj

)
+ S(r, f).

Moreover, let k be a positive integer, we denote by Nk)(r, 1
f ) the counting func-

tion of those zeros of f whose multiplicity are less than or equal to k and by
N(k+1(r, 1

f ) the counting function of those zeros of f whose multiplicity are greater
than k. We denote by Nk)(r, 1

f ) and N (k+1(r, 1
f ) the corresponding reduced count-

ing functions respectively. Similarly define for Nk)(r, f), N(k+1(r, f), Nk)(r, f) and
N (k+1(r, f) etc.

2. Main results

In 1959, W. K. Hayman proved the following well known theorem.

Theorem D (see [6]). Let f be a transcendental meromorphic function, and let
n be a positive integer. If n ≥ 3, then fnf ′ assumes every finite nonzero value
infinitely often.

Also Hayman conjectured in [5] that the conclusion of Theorem D remained
valid for n = 1 and n = 2. The case n = 2 was settled by E. Mues[7] in 1979. The
last case n = 1 was solved by W. Bergweiler and A. Eremenko[1], H. Chen and M.
Fang[2], independently. They proved the following theorem.

Theorem E (see [1]-[2]). Let f be a transcendental meromorphic function, then
ff ′ assumes every finite nonzero value infinitely often.

A natural question is: Whether the analogous conclusion still holds if in The-
orem D, f ′ is replaced by f (k) even by a more general differential monomial
ψ = (f ′)n1 · · · , (f (k))nk , where k is a positive integer, n1, · · · , nk are all nonnegative
integers with n1 + · · · + nk ≥ 1. This question has been studied by a number of
authors such as L. R. Sons, N. Steinmetz, C. C. Yang, L. Yang and Y. F. Wang,
etc and a series of results have been obtained (see [8]-[13], etc).

Recently, X. C. Pang and L. Zalcman proved the following theorem.

Theorem F (see [8]). Let f be a transcendental entire function all of whose zeros
have multiplicity at least k, and let n be a positive integer. Then fnf (k) assumes
every finite nonzero value infinitely often.

Remark 1. It seems that Pang-Zalcman’s method used in the proof of Theorem F
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does not work on meromorphic functions; Moreover, in Theorem F the restriction
on the multiplicity of zeros of the function is somewhat strong.

In view of the fact that, in the above Theorem F, the case n ≥ 2 was resolved
(for meromorphic function) by N. Steinmetz with no additional hypothesis (see [10],
Theorem 1). So the purpose of this article is only to study the value distribution of
the meromorphic (entire) function ff (k); In the case when f is entire, the restriction
on the multiplicity of zeros of f has been relaxed greatly. We proved the following
results.

Theorem 1. Let f be a transcendental entire function, and let k(≥ 2) be a positive
integer. If T (r, f) 6= N1)(r, 1

f ) + S(r, f), then ff (k) assumes every finite nonzero
value infinitely often.

Corollary 1.1. Let f be a transcendental entire function all of whose zeros have
multiplicity at least 2, then for any positive integer k(≥ 2), ff (k) assumes every
finite nonzero value infinitely often.

Remark 2. Obviously, Theorem 1 and Corollary 1.1 improve Theorem F by greatly
relaxing the restriction on the multiplicity of zeros of f .

Theorem 2. Let f be a transcendental meromorphic function all of whose zeros
have multiplicity at least t, then for any positive integer k(≥ 2), ff (k) assumes
every finite nonzero value infinitely often, where t = k + 1 if 2 ≤ k ≤ 4; t = 5 if
k = 5 and t = 6 if k ≥ 6 respectively.

By Theorem 2 and Theorem E, we obtain the following corollary immediately.

Corollary 2.1. Let f be a transcendental meromorphic function all of whose zeros
have multiplicity at least k, then ff (k) assumes every finite nonzero value infinitely
often, except for at most three positive integers k with 2 ≤ k ≤ 4.

3. Lemmas

Let f be a nonconstant meromorphic function in the complex plane C, and let k
be a positive integer. We call M [f ] = fn0(f ′)n1 · · · (f (k))nk a differential monomial

in f , where n0, n1, · · · , nk are nonnegative integers, and γM :=
k∑

j=0

nj its degree.

Furthermore, let Mj [f ] denote differential monomials in f of degree γMj for j =
1, · · · , n, and let aj(z) be meromorphic functions satisfying T (r, aj(z)) = S(r, f) for

j = 1, · · · , n, then Q[f ] =
n∑

j=1

aj(z)Mj [f ] is called a differential polynomial in f of

degree γQ := max1≤j≤n γMj with coefficients aj(z). If the coefficients aj(z) only
satisfy m(r, aj(z)) = S(r, f), then we call the function Q[f ] a quasi-differential
polynomial in f .

Lemma 1 (see [3]). Let f be a nonconstant meromorphic function and Q1[f ], Q2[f ]
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be quasi-differential polynomials in f with Q2[f ] 6≡ 0. Let n be a positive integer
and fnQ1[f ] = Q2[f ]. If γQ2 ≤ n, then m(r,Q1[f ]) = S(r, f), where γQ2 is the
degree of Q2[f ].

Lemma 2 (see [14], p.41). Let f be a transcendental meromorphic function and k
be a positive integer, then N(r, 1

f(k) ) ≤ N(r, 1
f ) + kN(r, f) + S(r, f).

We now state the main lemma of this article which is interesting by itself.

Lemma 3. Let f be a transcendental meromorphic function, and let k be a positive
integer. Set

(1) F = ff (k) − 1,

then we have

T (r, f) < 4N(r,
1
F

) + 4Nk)(r,
1
f

) + N(r,
1
f

) + S(r, f).

Proof. From (1) we obtain

T (r, F ) = O(T (r, f)),(2)

fa = −F ′

F
,(3)

where

(4) a =
f ′

f
f (k) + f (k+1) − f (k) F

′

F
.

Since f is transcendental, it follows from (1) that F 6≡ constant. Thus by (3) we
can deduce that a 6≡ 0. By applying Lemma 1 to (3) and noting (2), we have

(5) m(r, a) = S(r, f).

From (1) we can see that any pole of f must be a simple pole of F ′
F . Therefore, it

follows from (3) that any pole of f with multiplicity q (≥ 2) must be a zero of a
with multiplicity q − 1. Thus we get

(6) N(2(r, f) ≤ N(r,
1
a
) + N(r,

1
a
) ≤ 2N(r,

1
a
).

Suppose that z0 is a zero of f with multiplicity q (≥ k + 1), then we find that
z0 is a zero of F ′ = ff (k+1) + f ′f (k) with multiplicity at least 2q− (k +1). So from
(3) we can deduce that z0 will never be a pole of a. Hence, the poles of a come only
from the zeros of F and those zeros of f with multiplicity less than or equal to k.
Which together with (4) gives

(7) N(r, a) ≤ Nk)(r,
1
f

) + N(r,
1
F

).
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From (5) and (7), we have

(8) T (r, a) ≤ Nk)(r,
1
f

) + N(r,
1
F

) + S(r, f).

By using (6), (8) and the first fundamental theorem, we get

(9) N(2(r, f) ≤ 2Nk)(r,
1
f

) + 2N(r,
1
F

) + S(r, f).

From (2), (3), (8) and the first fundamental theorem, it follows that

m(r, f) ≤ m(r,
1
a
) + S(r, f) = T (r, a)−N(r,

1
a
) + S(r, f)(10)

≤ Nk)(r,
1
f

) + N(r,
1
F

)−N(r,
1
a
) + S(r, f).

If there exist only finitely many simple poles of f , then from (9) and (10) we can
deduce that the conclusion of Lemma 3 holds. We now suppose that there exist
infinitely many simple poles of f . Let z0 be a simple pole of f , from (3) we can
find that a(z0) 6= 0, ∞. Suppose that f and a have the following expansions in a
neighborhood of z0 respectively:

f(z) =
c1

z − z0
+ c0 + O(z − z0),(11)

a(z) = a(z0) + a′(z0)(z − z0) + O((z − z0)2),(12)

where the constant c1 6= 0 and a(z0) 6= 0. By taking the derivatives on both sides
of (11), we have

(13) f (j)(z) =
(−1)jj!c1

(z − z0)j+1
+ O(1) for j = 1, 2, · · · .

Moreover, from (3) and (4), we obtain

(14) fa = f ′f (k) + ff (k+1) + f2f (k)a.

By substituting (11), (12) and (13) into (14) and comparing the coefficients of both
sides of equality (14), we get

(15) c1 =
k + 2
a(z0)

, c0 = − (k + 2)2a′(z0)
(k + 3)a2(z0)

.

From (11), (12) and (13) we get

(16)
f ′

f
= − 1

z − z0
+

c0

c1
+ O(z − z0),

F ′

F
= − k + 2

z − z0
+

c0

c1
+ O(z − z0).
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Define

(17) h(z) :=
F ′

F
− (k + 2)

f ′

f
− (k + 1)(k + 2)

k + 3
a′(z)
a(z)

.

Then from (15)-(17), it can be seen that h(z0) = 0. That is to say, the simple poles
of f must be the zeros of h(z). Moreover, from (17), (2) and (4), we get

(18) m(r, h(z)) = S(r, f).

In the sequel we shall prove that h(z) 6≡ 0. Suppose to the contrary that h(z) ≡
0, then from (17) we obtain F ′

F ≡ (k + 2) f ′

f + (k+1)(k+2)
k+3

a′(z)
a(z) . By integrating, we

have

(19) F k+3 ≡ cf (k+2)(k+3) · a(k+1)(k+2),

where c is a nonzero constant.
From (1) we can find that any zero of f is neither a zero nor a pole of F .

Suppose that there exists a zero point z0 of f with multiplicity q, then we can see
from (19) that z0 must be a pole of the function a with multiplicity k+3

k+1q (> q),
and so by (3) we know that z0 must be a pole of F ′

F , which is a contradiction. Thus
we have f(z) 6= 0. On the other hand, suppose that there exists a pole point z1 of
a(z) defined by (4), then we can see from (19) that z1 must be a pole of F because
f has no zero, which when combined with (1) shows that z1 is also a pole of f . This
contradicts (3) again. Therefore, we have a(z) 6= ∞, which together with (5) gives
that

(20) T (r, a) = m(r, a) + N(r, a) = S(r, f).

Since f is transcendental, we can rewrite (4) as: a
f(k) = f ′

f + f(k+1)

f(k) − F ′
F , which

when combined with (20) and (2) gives

S(r, f) = m(r,
f ′

f
+

f (k+1)

f (k)
− F ′

F
) = m(r,

a

f (k)
) = m(r,

1
f (k)

) + S(r, f),

that is, m(r, 1
f(k) ) = S(r, f), from which, Lemma 2, the first fundamental theorem

and the fact that f 6= 0 it follows that

T (r, f (k))

= T (r,
1

f (k)
) + O(1) = N(r,

1
f (k)

) + S(r, f) ≤ N(r,
1
f

) + kN(r, f) + S(r, f)

= N(r, f (k))−N(r, f) + S(r, f) ≤ T (r, f (k))−N(r, f) + S(r, f).

From the above we have N(r, f) = S(r, f). Moreover, we can see from (1) that
any zero of F will never be a zero of f (k), from which, (4) and the fact that f 6= 0 we
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can deduce that any zero of F must be a pole of a, which and the fact that a(z) 6= ∞
show that F (z) 6= 0. Hence, from (10), and noting the facts that f 6= 0, F 6= 0 and
N(r, f) = S(r, f), we get T (r, f) = S(r, f), which contradicts the assumption that
f is transcendental. So we must have h(z) 6≡ 0.

We know that any simple pole of f is a zero of h, and from (3) we can see that
any multiple pole of f must be a zero of a. Moreover, we note the facts that any
pole of F must be a pole of f and that any zero of F must be a pole of a. It follows
from the above analysis that

(21) N(r, h) ≤ N(r, a) + N(r,
1
a
) + N(r,

1
f

).

By (18), (21) and the first fundamental theorem, we get

(22) N1)(r, f) ≤ N(r,
1
h

) ≤ N(r, h)+S(r, f) ≤ N(r, a)+N(r,
1
a
)+N(r,

1
f

)+S(r, f).

From (6), (8), (10) and (22) we obtain

T (r, f) = m(r, f) + N1)(r, f) + N(2(r, f)

≤ Nk)(r,
1
f

) + N(r,
1
F

)−N(r,
1
a
) + N(r, a) + N(r,

1
a
)

+N(r,
1
f

) + 2N(r,
1
a
) + S(r, f)

≤ Nk)(r,
1
f

) + N(r,
1
F

) + 3T (r, a) + N(r,
1
f

) + S(r, f)

≤ 4Nk)(r,
1
f

) + 4N(r,
1
F

) + N(r,
1
f

) + S(r, f).

This proves Lemma 3. ¤

4. Proof of Theorem 2

We shall divide our argument into three cases.

Case (i). 2 ≤ k ≤ 4
In this case, we know from the assumption of Theorem 2 that all zeros of f have

multiplicity at least t = k + 1. So by Lemma 3, we have

T (r, f) ≤ 4N(r,
1
F

) + 5Nk)(r,
1
f

) + N (k+1(r,
1
f

) + S(r, f)

= 4N(r,
1
F

) + N (k+1(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) +
1

k + 1
T (r, f) + S(r, f) ≤ 4N(r,

1
F

) +
1
3
T (r, f) + S(r, f).
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From the above we can deduce that F has infinitely many zeros.

Case (ii). k ≥ 6
In this case, we get from the assumption of Theorem 2 that all zeros of f have

multiplicity at least t = 6. Moreover, it follows from (3) that any multiple zero of
f must be a zero of F ′, thus from (1), (2), (6), (8), (22) and Lemma 2 we get

5N (6(r,
1
f

)

≤ N(r,
1
F ′

) ≤ N(r,
1
F

) + N1)(r, f) + N (2(r, f) + S(r, f)

≤ N(r,
1
F

) + N(r, a) + N(r,
1
a
) + N(r,

1
f

) +
1
2
{N(r,

1
a
) + N(r,

1
a
)}+ S(r, f)

≤ N(r,
1
F

) + 3T (r, a) + N(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) + 4Nk)(r,
1
f

) + N (k+1(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) + 4N (6(r,
1
f

) + S(r, f).

That is N (6(r, 1
f ) ≤ 4N(r, 1

F ) + S(r, f). If N (6(r, 1
f ) 6= S(r, f), then we can

deduce that F has infinitely many zeros. Otherwise, we will have N(r, 1
f ) =

N (6(r, 1
f ) = S(r, f), and so we can also deduce from Lemma 3 that there exist

infinitely many zeros of F .

Case (iii). k = 5
In this case, it follows from the assumption of Theorem 2 that all zeros of f

have multiplicity at least t = 5. We now denote by Nk(r, 1
f ) the counting function

of those zeros of f with multiplicity k; by Nk(r, 1
f ) the corresponding reduced

counting function. Since all zeros of f have multiplicity at least k, thus we have
Nk)(r, 1

f ) = Nk(r, 1
f ) and Nk)(r, 1

f ) = Nk(r, 1
f ), which gives

Nk)(r,
1
f

) = Nk(r,
1
f

) =
1
k

Nk(r,
1
f

) =
1
k

[N(r,
1
f

)−N(k+1(r,
1
f

)](23)

≤ 1
k

[T (r, f)−N(k+1(r,
1
f

)] + O(1).

We now shall divide our following argument into three subcases again.
Subcase (iii-1). N (k+1(r, 1

f ) 6= S(r, f)

By (23), we get Nk)(r, 1
f ) ≤ 1

kT (r, f)− k+1
k N (k+1(r, 1

f ) + O(1), that is

(24) N(r,
1
f

) ≤ 1
k

T (r, f)− 1
k

N (k+1(r,
1
f

) + O(1).
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Noting that k = 5, it follows from Lemma 3 and (24) that

T (r, f) ≤ 4N(r,
1
F

) + 4Nk)(r,
1
f

) +
1
k

T (r, f)− 1
k

N (k+1(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) +
4
k

Nk(r,
1
f

) +
1
k

T (r, f)− 1
k

N (k+1(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) +
5
k

T (r, f)− 1
k

N (k+1(r,
1
f

) + S(r, f)

= 4N(r,
1
F

) + T (r, f)− 1
k

N (k+1(r,
1
f

) + S(r, f),

from the above we get 1
kN (k+1(r, 1

f ) ≤ 4N(r, 1
F ) + S(r, f). This implies that F has

infinitely many zeros.
Subcase (iii-2). N (k+1(r, 1

f ) = S(r, f), but N(k+1(r, 1
f ) 6= S(r, f)

From Lemma 3 and (23), we obtain

T (r, f) ≤ 4N(r,
1
F

)+5Nk)(r,
1
f

)+S(r, f) ≤ 4N(r,
1
F

)+
5
k

T (r, f)−5
k

N(k+1(r,
1
f

)+S(r, f).

Considering the fact that k = 5, by the above we get 5
kN(k+1(r, 1

f ) ≤ 4N(r, 1
F ) +

S(r, f), which shows that F has infinitely many zeros.
Subcase (iii-3). N(k+1(r, 1

f ) = S(r, f)
Noting that all zeros of f have multiplicity at least k, so in this subcase we have

(25) N(r,
1
f

) = Nk(r,
1
f

) + S(r, f).

If Nk(r, 1
f ) = S(r, f), then from Lemma 3 and (25) we can deduce that the conclu-

sion of Theorem 2 holds. We now suppose that Nk(r, 1
f ) 6= S(r, f) and that z0 is a

zero of f with multiplicity k, then we have f (k)(z0) 6= 0,∞. Moreover, we can see
from (1) that F (z0) = −1. Hence, by (4) we can deduce that z0 must be a simple
pole of a(z). Suppose that there exists a point z1 such that F (z1) = 0, then from (1)
it follows that f(z1) 6= 0, ∞ and that f (k)(z1) 6= 0, ∞. Which when combined with
(4) we get a(z1) = ∞. From the above analysis we can see that any zero of both
f and F will be a pole of a(z) on condition that N(k+1(r, 1

f ) = S(r, f). Moreover,
we can see from (3) that any multiple pole of f must be a zero of a, and note that
each simple pole of f is a zero of h(z). So from (17) it follows that all poles of h
arise only from the zeros or poles of a. Which implies that

(26) N(r, h) ≤ N(r, a) + N(r,
1
a
).
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From (6), (8), (10)and (26), we get

T (r, f) = m(r, f) + N1)(r, f) + N(2(r, f)

≤ T (r, a)−N(r,
1
a
) + N(r,

1
h

) + 2N(r,
1
a
) + S(r, f)

≤ T (r, a) + N(r,
1
a
) + N(r, h) + S(r, f)

≤ T (r, a) + N(r,
1
a
) + N(r, a) + N(r,

1
a
) + S(r, f)

≤ 4T (r, a) + S(r, f) ≤ 4N(r,
1
F

) + 4Nk(r,
1
f

) + S(r, f)

≤ 4N(r,
1
F

) +
4
k

Nk(r,
1
f

) + S(r, f) ≤ 4N(r,
1
F

) +
4
k

T (r, f) + S(r, f).

Since k = 5, it follows from the above that F must have infinitely many zeros. This
completes the proof of Theorem 2. ¤

5. Proof of Theorem 1

Since f is an entire function and a(z) has only simple poles, it follows from (3)
that any multiple zero of f must be a zero of F ′. So it follows from Lemma 2 and
(1) that

N (2(r,
1
f

) ≤ N(r,
1
F ′

) ≤ N(r,
1
F

) + N(r, F ) + S(r, f)(27)

= N(r,
1
F

) + N(r, f) + S(r, f) = N(r,
1
F

) + S(r, f).

By (10) and (27) we have

T (r, f) = m(r, f) ≤ Nk)(r,
1
f

) + N(r,
1
F

)−N(r,
1
a
) + S(r, f)(28)

≤ N1)(r,
1
f

) + 2N(r,
1
F

)−N(r,
1
a
) + S(r, f).

If F has only finitely many zeros, then from (28) we get T (r, f) = N1)(r, 1
f )+S(r, f),

which contradicts the condition of Theorem 1. The proof of Theorem 1 is complete.

Final Remark. According to Bloch’s principle (see [15], p.222), we guess that
there exists a corresponding normal criterion to Corollary 1.1. So we have the fol-
lowing

Conjecture. Let F be a family of holomorphic functions on the unit disc ∆ such
that all zeros of functions in F have multiplicity greater than or equal to 2. Suppose
that there exist a positive integer k(≥ 2) and a finite nonzero value a such that
ff (k) 6= a for every f ∈ F . Then F is a normal family.
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