• Title/Summary/Keyword: Neutrons

Search Result 310, Processing Time 0.029 seconds

Reactor Neutron Activation Analysis by a Single Comparator Method

  • Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.137-149
    • /
    • 1973
  • A method of activation analysis, based on the irradiation and counting of an iron wire which contains manganese impurity as the single comparator. has been elaborated by critical evaluation of nuclear data involved in activation and activity measurement. The variation of effective cross section is investigated as a function of the spectral index and other parameters such as a measure of the proportion of epithermal neutrons in the reactor spectrum. The errors induced by shifts in the neutron spectrum in the irradiation positions are discussed. The known amount of each element is irradiated simultaneously together with the single comparator, and the obtained values are compared with the known amount of each element. The results show that en general the random errors are not greater than those obtained by using the conventional relative method, but the systematic errors were up to about 20%. This method is applied to the determinations of fourteen rare earth elements in monazite as well as other seven elements in the standard kale powder. The satisfactory reproducibility of the present method makes possible the determination of the elements with an accuracy attainable with the conventional relative method.

  • PDF

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction (기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석)

  • 이충효;조재문;이상진;심해섭;이창희
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.664-664
    • /
    • 2001
  • The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Consideration of the benefits of using a high current accelerator in BNCT

  • Cho, Ilsung;Min, Sun-Hong;Park, Chawon;Kim, Minho;Lee, Kyo Chul;Lee, Yong Jin;Hong, Bong Hwan;Lim, Sang Moo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Boron Neutron Capture Therapy (BNCT) has the advantage of selectively removing cancer cells ingesting boron compounds. In this study, the benefits for treatment time and boron compound injection dose were compared between current neutron sources and a high current neutron sources to be developed in near future. The time-activity curve (TAC) of GBM (Glioblastoma) for one bolus injection was obtained by applying modified 3 compartment model. The treatment time was determined for an accelerator-based neutron sources at the present time and a high current accelerator based neutron source to be developed in the near future. In the case of the double amount of IAEA-recommended neutron flux, the treatment time was shortened to 15 minutes. In the case of high current accelerators, which are five times the amount of IAEA-recommended neutron flux, the irradiation time is within 5 minutes. The use of a high current accelerator based neutron source in BNCT is advantageous in terms of treatment time. In addition, it can increase the efficiency of use of neutrons and reduce the boron compound injection dose to patients, thus reducing pharmacological toxicity.

Estimation of Dose Distribution on Carbon Ion Therapy Facility using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 중입자 치료실의 선량분포 추정)

  • Song, Yongkeun;Heo, Seunguk;Cho, Gyuseok;Choi, Sanghyun;Han, Moojae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.437-442
    • /
    • 2017
  • Heavy ion therapy has a high cure rate for cancer cell. So many countries are introducing heavy ion therapy facility. When treating a cancer using heavy ion therapy, neutrons and gamma rays are generated and affect electronic equipment. A budget of about KRW 200 billion is needed to build a heavy ion therapy facility, and it takes more than five years to build it. Therefore it is important to observe the dose distribution in the treatment room using the monte carlo simulation before construction. In this study, we used the FLUKA of monte carlo simulation to investigate the dose distribution in the heavy ion treatment room.

A Microstructural Design and Modeling of Neutron-Irradiated Materials (중성자 조사재의 미세구조 설계와 모델링)

  • Chang, Kunok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.347-351
    • /
    • 2020
  • A material changes its physical and chemical properties through the interaction with radiation and also the neutrons, which is electronically neutral so that the penetration depth is relatively deeper than that of other radioactive way including alpha or beta ray. Therefore, the radiation damage by neutron irradiation has been intensively investigated for a long time with respect to the safety of nuclear power plants. The damage induced by neutron irradiation begins with the creation of point defects in atomic scale in the unit of picoseconds, and their progress pattern can be characterized by microstructural defects, such as dislocation loops and voids. Their morphological characteristics affect the properties of neutron-irradiated materials, therefore, it is very important to predict the microstructure at a given neutron irradiation condition. This paper briefly reviews the evolution of radiation damage induced by neutron irradiation and introduces a phase-field model that can be widely used in predicting the microstructure evolution of irradiated materials.

Measurement of Ballooning Gap Size of Irradiated Fuels Using Neutron Radiography Transfer Method and HV Image Filter

  • Sim, Cheul-Muu;Kim, TaeJoo;Oh, Hwa Suk;Kim, Joon Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.212-218
    • /
    • 2013
  • A transfer method of neutron radiography was developed to measure the size of the end plug and a gap of an intact K102L-2, the irradiated fuel of a ballooned K174L-3, a ballooned and ruptured K98L-3. A typical irradiation time of 25 min. was determined to obtain a film density of between 2 and 3 of SR X-ray film with neutrons of $1.5{\times}10^{11}n{\cdot}cm^{-2}$. To validate and calibrate the results, a RISO fuel standard sample, Cd plate and ASTM-BPI/SI were used. An activated latent image formed in the $100{\mu}m$ Dy foil was subsequently transferred in a dark room for more than 8 hours to the SR film which is a maximum of three half-lives. Due to the L/D ratio an unsharpness of $9.82-14{\mu}m$ and a magnification of 1.0003 were given. After digitizing an image of SR film, the ballooning gap of the plug was discernible by an H/V filter of image processing. The gap size of the ballooned element, K174L-3, is equal to or greater than 1.2 mm. The development of a transfer method played a pivotal role in developing high burn-up of Wolsung and PWR nuclear fuel type.

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Irradiation Behavior of Reactor Pressure Vessel SA508 class 3 Steel Weld Metals (압력용기강재 SA508 class 3 용착금속의 조사거동)

  • Koh, Jin-Hyun;Park, Hyoung-Keun;Kim, Soo-Sung;Hwang, Yong-Hwa;Seo, Yun-Seok
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • Irradiation behavior of the reactor pressure vessel SA508 class 3 steel weld metals was examined by Charpy V Notch impact specimens. The specimens were exposed to a fluence of $2.8{\times}1019$ neutrons(n)/$cm^2$(E>1 MeV) at $288^{\circ}C$. The irradiation damage of weld metal was evaluated by comparison between unirradiated and irradiated specimens in terms of absorbed energy and lateral expansion. The specimens for neutron irradiation were welded by submerged arc welding process at a heat input of 3.2 kJ/mm which showed good toughness in terms of weld microstructure, absorbed energy and lateral expansion. The post-irradiation Charpy V notch 41J and 68J transition temperature elevation were $65^{\circ}C$ and $70^{\circ}C$, respectively. This elevation was accompanied by a 20% reduction in Charpy V notch upper shelf energy level. The lateral expansion at 0.9mm irradiated Charpy specimens showed temperature elevation of $65^{\circ}C$ and was greatly decreased due to radiation damage.