DOI QR코드

DOI QR Code

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil (Neutron Science Center, Korea Atomic Energy Research Institute) ;
  • Kim, Jongyul (Neutron Science Center, Korea Atomic Energy Research Institute) ;
  • Lee, Eunjoong (Decommissioning Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Moon, Myungkook (Radiation Equipment Research Division, KAERI Advanced Radiation Technology Institute) ;
  • Cho, Sangjin (Neutron Science Center, Korea Atomic Energy Research Institute) ;
  • Cho, Gyuseong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2019.06.24
  • Accepted : 2019.08.21
  • Published : 2020.03.25

Abstract

Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Keywords

References

  1. HANARO. https://hanaro.kaeri.re.kr. (Accessed 1 January 2019).
  2. SNS. https://neutrons.ornl.gov/sns. (Accessed 1 January 2019).
  3. LANSCE. https://lansce.lanl.gov. (Accessed 1 January 2019).
  4. J-PARC. https://j-parc.jp. (Accessed 1 January 2019).
  5. LENS. https://www.indiana.edu/-lens/. (Accessed 1 January 2019).
  6. Y. Ikeda, A. Taketani, M. Takamura, H. Sunaga, M. Kumagai, Y. Oba, Y. Otake, H. Suzuki, Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction, Nucl. Instrum. Methods Phys. Res., Sect. A 833 (2016) 61-67. https://doi.org/10.1016/j.nima.2016.06.127
  7. I.S. Anderson, C. Andreani, J.M. Carpenter, G. Festa, G. Gorini, C.-k. Loong, R. Senesi, Research opportunities with compact accelerator-driven neutron sources, Phys. Rep. 654 (2016) 1-58. https://doi.org/10.1016/j.physrep.2016.07.007
  8. P. Lee, Design of the 100 MeV proton-beam target system for the pulsed neutron source at the KOMAC, J. Korean Phys. Soc. 73-8 (2018) 1068-1072. https://doi.org/10.3938/jkps.73.1068
  9. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.E. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R.A. Forster, L. Casswell, MCNP6.2 Release Notes, Loa Alamos National Laboratory, 2018 report LA-UR-18-20808.
  10. J.F. Zeigler, M.D. Ziegler, J.P. Biersack, SRIM-the stopping and rage of ions in matter, Nucl. Instrum. Methods Phys. Res., Sect. B (2010) (2010) 1818-1823, 268-11. https://doi.org/10.1016/j.nimb.2010.02.091
  11. M.R. Hawkesworth, Neutron radiography. equipment and methods, Atomic Res. Rev. 15-2 (1977) 169-220.
  12. T.M. Massey, D.K. Jacobs, S.I. Al-Quraishi, S.M. Grimes, C.E. Brient, W.B. Howard, J.C. Yanch, Study on the Be(p, n) and Be(d, n) source reactions, J. Nucl. Sci. Technol. 39-2 (2002) 677-680. https://doi.org/10.1080/00223131.2002.10875190
  13. C.M. Lavelle, D.V. Boxter, A. Bogdanov, V.P. Derenchuk, H. Kaiser, M.B. Leuschner, M.A. Lone, W. Lozowski, H. Nann, B.V. Przewoski, N. Remmes, T. Rinckel, Y. Shin, W.M. Snow, P.E. Sokol, Neutronic design and measured performance of the low energy neutron source (LENS) target moderator reflector assembly, Nucl. Instrum. Methods Phys. Res., Sect. A 587 (2011) 324-341.
  14. F. Sordo, S. Terron, M. Magan, G. Muhrer, A. Chiglino, F. Martinez, P.J. de Vicente, R. Vivanco, J.M. Perlado, F.J. Bermejo, Neutronic design for ESS-Bilbao neutron source, Nucl. Instrum. Methods Phys. Res., Sect. A 707 (2013) 1-8. https://doi.org/10.1016/j.nima.2012.12.092
  15. Y. Kiyanagi, Experimental studies on neutronic performance of various coldneutron moderators for the pulsed neutron sources, Nucl. Instrum. Methods Phys. Res., Sect. A 562 (2006) 561-564. https://doi.org/10.1016/j.nima.2006.02.009
  16. Y. Xiao, Z. Chen, Y. Yang, X. Wang, Development progress of the neutron imaging station in CPHS, Phys. Proc. 69 (2015) 96-103. https://doi.org/10.1016/j.phpro.2015.07.014
  17. Y. Zou, W. Wen, Z. Guo, Y. Lu, S. Peng, K. Zhu, X. Yan, S. Gao, J. Zhao, H. Li, Q. Zhou, H. Ren, M. Zhang, P. Lu, J. Guo, G. Tang, D. Mo, J. Chen, PKUNIFTY: a neutron imaging facility based on an RFQ accelerator, Nucl. Instrum. Methods Phys. Res., Sect. A 651 (2011) 62-66. https://doi.org/10.1016/j.nima.2011.02.011
  18. S. Wang, Y. Otake, Y. Yamagata, T. Nagae, H. Fujioka, M. Hirose, Y. Kiyanagi, M. Furusaka, K. Hirota, Simulation and design of a simple and easy-to-use small-scale neutron source at Kyoto university, Phys. Proc. 60 (2014) 310-319. https://doi.org/10.1016/j.phpro.2014.11.041
  19. Y. Yamagata, K. Hitora, J. Ju, S. Wang, S. Morita, J. Kato, Y. Otake, A. Taketani, Y. Seki, M. Yamada, H. Ota, U. Bautista, Q. Jia, Development of a neutron generating target for compact neutron sources using low energy proton beams, J. Radioanal. Nucl. Chem. 305 (2015) 787-794. https://doi.org/10.1007/s10967-015-4059-8
  20. T. Rinckel, D.V. Baxter, J. Doskow, P.E. Sokol, T. Todd, Target performance at the low energy neutron source, Phys Proc 26 (2012) 168-177. https://doi.org/10.1016/j.phpro.2012.03.022
  21. A. Sato, Y. Takizawa, F. Hiraga, Y. Kiyanagi, Neutron slowing down efficiency depending on the proton energy for accelerator based BNCT", Phys. Proc. 60 (2014) 15-22. https://doi.org/10.1016/j.phpro.2014.11.004
  22. J. Kim, S. Lee, S. Lee, J. Kim, M. Moon, Design and characterization of a thermal neutron source based on a 13 MeV proton cyclotron, New Phy.: Sae Mulli 66-2 (2016) 162-168. https://doi.org/10.3938/NPSM.66.162
  23. D.V. Baxter, Materials and neutronic research at the low energy neutron source, Eur. Phys. J. Plus 83 (2016) 1-6.
  24. Y. Kiyanagi, Neutron imaging at compact accelerator-driven neutron sources in Japan, J. Imagism 55 (2018) 1-13.

Cited by

  1. Design improvements of the beryllium target of Compact Neutron Source DARIA vol.1008, 2021, https://doi.org/10.1016/j.nima.2021.165462