DOI QR코드

DOI QR Code

A Microstructural Design and Modeling of Neutron-Irradiated Materials

중성자 조사재의 미세구조 설계와 모델링

  • Chang, Kunok (Department of Nuclear Engineering, Kyung Hee University)
  • 장근옥 (경희대학교 원자력공학과)
  • Received : 2020.06.27
  • Accepted : 2020.07.16
  • Published : 2020.08.10

Abstract

A material changes its physical and chemical properties through the interaction with radiation and also the neutrons, which is electronically neutral so that the penetration depth is relatively deeper than that of other radioactive way including alpha or beta ray. Therefore, the radiation damage by neutron irradiation has been intensively investigated for a long time with respect to the safety of nuclear power plants. The damage induced by neutron irradiation begins with the creation of point defects in atomic scale in the unit of picoseconds, and their progress pattern can be characterized by microstructural defects, such as dislocation loops and voids. Their morphological characteristics affect the properties of neutron-irradiated materials, therefore, it is very important to predict the microstructure at a given neutron irradiation condition. This paper briefly reviews the evolution of radiation damage induced by neutron irradiation and introduces a phase-field model that can be widely used in predicting the microstructure evolution of irradiated materials.

재료는 방사선과 상호작용을 통해 그 물리적, 화학적 특성이 변화하며 여러 방사선 중에서 전하를 띄고 있지 않아 침투깊이가 깊은 중성자 조사에 의한 금속소재의 조사손상은 원자력발전소의 안전과 관련해서 오랜 기간 동안 집중적인 연구대상이었다. 중성자 조사에 의한 조사손상은 초반 피코 초 스케일에서 벌어지는 원자단위의 점결함의 생성으로 시작되며 그 이후의 전개 양상은 전위 고리나 공극과 같은 미세구조상 결함으로 확인될 수 있다. 이러한 미세구조 상 결함의 형상과 분포에 따라 소재의 특성에 미치는 효과는 상이하게 된다. 그러므로 중성자 조건에 따른 미세구조를 예측하는 것은 매우 중요한 일로, 본 논문에서는 중성자 조사에 의한 재료 내의 미세구조 발달에 대해 리뷰한 뒤 조사된 소재의 미세구조 변화 예측에 널리 사용될 수 있는 상장 모델에 대해 간략히 소개하였다.

References

  1. J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engineering, 4th ed., 244-245, Pearson, USA (2017).
  2. K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, and W. J. Weber, Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun., 9, 1-8 (2018). https://doi.org/10.1038/s41467-017-02088-w
  3. K. Vortler, C. Bjorkas, D. Terentyev, L. Malerba, and K. Nordlund, The effect of Cr concentration on radiation damage in Fe-Cr alloys, J. Nucl. Mater., 382, 24-30 (2008). https://doi.org/10.1016/j.jnucmat.2008.09.007
  4. D. A. Porter and E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed., 244-245, CRC press, USA (2009).
  5. C. H. Woo and W. Frank, The influence of temperature on void-lattice formation and swelling, J. Nucl. Mater., 148, 121-135 (1987). https://doi.org/10.1016/0022-3115(87)90104-8
  6. T. Nuroga, H. Watanabe, and N. Yoshida, Correlation of fast neutron, fusion neutron and electron irradiations based on the dislocation loop density, J. Nucl. Mater., 174, 282-288 (1990). https://doi.org/10.1016/0022-3115(90)90241-E
  7. A. D. Brasilsford and R. Bull, The influence of temperature on void-lattice formation and swelling, J. Nucl. Mater., 44, 121-135 (1972). https://doi.org/10.1016/0022-3115(72)90091-8
  8. M. Li, M. A. Kirk, P. M. Baldo, D. Xu, and B. D. Wirth, Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling, Philos. Mag., 92, 2048-2078 (2012). https://doi.org/10.1080/14786435.2012.662601
  9. P. J. Maziasz, R. L. Klueh, and J. M. Vitek, Helium effects on void formation in 9Cr-1MoVNb and 12Cr-1MoVW irradiated in HFIR, J. Nucl. Mater., 141, 929-937 (1986). https://doi.org/10.1016/0022-3115(86)90120-0
  10. L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041
  11. M. R. Tonks, A. Cheniour, and L. Aagesen, How to apply the phase field method to model radiation damage, Comput. Mater. Sci., 147, 353-362 (2018). https://doi.org/10.1016/j.commatsci.2018.02.007
  12. Y. Li, S. Hu, X. Sun, and M. Stan, A review: Applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials, Npj Comput. Mater., 3, 1-17 (2017).
  13. K. Chang, G. G. Lee, and J. Kwon, A phase-field modeling of void swelling in the Austenitic stainless steel, Radiat. Eff. Defects Solids, 171, 242-251 (2016).
  14. A. A. Wheele, W. J. Boettinger, and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424-7440 (1992). https://doi.org/10.1103/PhysRevA.45.7424
  15. S. G. Kim, W. T. Kim, and T. Suzuki, Phase-field model for binary alloys, Phys. Rev. E, 60, 7186-7197 (1999).
  16. S. Hu, D. E. Burkes, C. A. Lavender, D. J. Senor, W. Setyawan, and Z. Xu, Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation, J. Nucl. Mater., 479, 202-215 (2016).
  17. M. S. Veshchunov, V. D. Ozrin, V. E. Shestak, V. I. Tarasov, R. Dubourg, and G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated $UO_2$ fuel, Nucl. Eng. Des., 236, 179-200 (2006). https://doi.org/10.1016/j.nucengdes.2005.08.006
  18. W. Xu, Y. Zhang, G. Cheng, W. Jian, P. C. Millett, C. C. Koch, S. N. Mathaudhu, and Y. Zhu, In-situ atomic-scale observation of irradiation-induced void formation, Nat. Commun., 4, 2288 (2013). https://doi.org/10.1038/ncomms3288