• 제목/요약/키워드: Neutral atmospheric boundary layer

검색결과 22건 처리시간 0.023초

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

준복잡지형 대기경계층 저층 풍속분포 특성분석 - 포항가속기 라이다 원격탐사 캠페인을 중심으로 (Analysis on Wind Profile Characteristics in a Sublayer of Atmospheric Boundary Layer over a Semi-Complex Terrain - LIDAR Remote Sensing Campaign at Pohang Accelerator Laboratory)

  • 김현구
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.145-152
    • /
    • 2012
  • The mean wind speed and turbulence intensity profiles in the atmospheric boundary layer were extracted from a LIDAR remote sensing campaign in order to apply for CFD validation. After considering the semi-steady state field data requirements to be used for CFD validation, a neutral atmosphere campaign period, in which the main wind direction and the power-law exponent of the wind profile were constantly maintained, was chosen. The campaign site at the Pohang Accelerator Laboratory, surrounded by 40~50m high hills, with an apartment district spread beyond the hills, is to be classified as a semi-complex terrain. Nevertheless, wind speed profiles measured up to 100m above the ground fitted well into a theoretical-experimental logarithmic-law equation. The LIDAR remote-sensing data of the sub-layer of the atmospheric boundary layer has been proven to be superior to the data obtained by conventional extrapolation of the wind profile with 2 or 3 anemometer measurements.

월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰 (Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region)

  • 정태윤;임희창;김현구;장문석
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

수로 장치내에서 공동영역 주변의 확산에 관한 실험적 연구 (An experimental investigaion of dispersion around cavity region in water channel)

  • 정상진
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.295-302
    • /
    • 1993
  • The nature of the cavity region and dispersion around trianglular ridge was investigated using model. The artifical neutral boundary layer was simulated in water channel. Two dimensional trianglar ridges, having height of 1.2 cm and various width were placed normal to the flow. Mean velocity with many dimensionless parameters were measured and compared with wind tunnel results by other studies. Using vorticity generator and roughness, the neutral boundary layer was well represented by the water channel. concentration patterns resulting from dye source placed 0.2 cm height above were examined. Narrower the trianglar ridge width resulted in increased amplification factor and the larges amplification factor was observed near downward top of the ridge.

  • PDF

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

다공성 방풍펜스가 대기경계층내에 놓인 삼각프리즘 표면압력에 미치는 영향에 관한 연구 (Porous Fence Effects on Surface-Pressure of a Triangular Prism in Atmospheric Boundary Layer)

  • 박철우;성승학
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2670-2680
    • /
    • 1996
  • Effeccs of porous wind fence on surface-pressure around 2-dimensional prism model of triangular cross-section were investigated experimentally. The pressure data were obtained at a Reynolds number based on the model height of Re=2.1*10$^{5}$ . Flow visualization also carried out to investigate the flow structure qualitatively. The mean velocity and turbulent intensity profiles measured at fence location were well fitted to the neutral atmospheric surface boundary layer over the open terrain. Various fences with different porosity and height were tested to investigate their effects on the surface pressure acting on a prism model at different locations. As the results, porous fence with porosity 40 ~ 50% is most effective for abating wind erosion. With decreasing porosity of the fence, pressure fluctuations on the model surface are increased. The mean pressure coefficients are decreased only when the fence height is greater than the model height. The effect of distance between wind fence and triangular prism was not significant, compared to that of the fence porosity and height.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

Diffusion of passive contaminant from a line source in a neutrally stratified turbulent boundary layer

  • Kurbatskii, Albert F.;Yakovenko, Sergey N.
    • Wind and Structures
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 2000
  • This paper presents results of modeling of the passive contaminant diffusion from a continuous line finite-size source located on the underlying surface of a neutral near-ground atmospheric layer obtained by using the non-local two-parameteric turbulence model and the transport equation of mean concentration. In the proposed diffusion model the turbulent diffusion coefficient changes not only with the vertical coordinate but also with the distance downstream from the source according to the experimental data. The results of the modeling reproduce structural features of the concentration field.