• Title/Summary/Keyword: Neuromorphic

Search Result 49, Processing Time 0.02 seconds

Analysis of Research and Development Efficiency of Artificial Intelligence Hardware of Global Companies using Patent Data and Financial data (특허 데이터 및 재무 데이터를 활용한 글로벌 기업의 인공지능 하드웨어 연구개발 효율성 분석)

  • Park, Ji Min;Lee, Bong Gyou
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.317-327
    • /
    • 2020
  • R&D(Research and Development) efficiency analysis is a very important issue in academia and industry. Although many studies have been conducted to analyze R&D(Research and Development) efficiency since the past, studies that analyzed R&D(Research and Development) efficiency considering both patentability and patent quality efficiency according to the financial performance of a company do not seem to have been actively conducted. In this study, measuring the patent application and patent quality efficiency according to financial performance, patent quality efficiency according to patent application were applied to corporate groups related to artificial intelligence hardware technology defined as GPU(Graphics Processing Unit), FPGA(Field Programmable Gate Array), ASIC(Application Specific Integrated Circuit) and Neuromorphic. We analyze the efficiency empirically and use Data Envelopment Analysis as a measure of efficiency. This study examines which companies group has high R&D(Research and Development) efficiency about artificial intelligence hardware technology.

Neuron Circuit Using a Thyristor and Inter-neuron Connection with Synaptic Devices

  • Ranjan, Rajeev;Kwon, Min-Woo;Park, Jungjin;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.365-373
    • /
    • 2015
  • We propose a simple and compact thyristor-based neuron circuit. The thyristor exhibits bi-stable characteristics that can mimic the action potential of the biological neuron, when it is switched between its OFF-state and ON-state with the help of assist circuit. In addition, a method of inter-neuron connection with synaptic devices is proposed, using double current mirror circuit. The circuit utilizes both short-term and long-term plasticity of the synaptic devices by flowing current through them and transferring it to the post-synaptic neuron. The double current mirror circuit is capable of shielding the pre-synaptic neuron from the post synaptic-neuron while transferring the signal through it, maintaining the synaptic conductance unaffected by the change in the input voltage of the post-synaptic neuron.

Volatile Memristor-Based Artificial Spiking Neurons for Bioinspired Computing

  • Yoon, Soon Joo;Lee, Yoon Kyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.311-321
    • /
    • 2022
  • The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-semiconductors (CMOS).

Implementation of Probabilistic Predictive Artificial Intelligence for Remote Diagnosis in Aging Society (고령화 사회 원격 진료를 위한 확률론적 예측인공지능 연구)

  • Jeong, Jae-Seung;Ju, Hyunsu
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2020
  • 저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.

Automatic Generation Tool for Open Platform-compatible Intelligent IoT Components (오픈 플랫폼 호환 지능형 IoT 컴포넌트 자동 생성 도구)

  • Seoyeon Kim;Jinman Jung;Bongjae Kim;Young-Sun Yoon;Joonhyouk Jang
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.32-39
    • /
    • 2022
  • As IoT applications that provide AI services increase, various hardware and software that support autonomous learning and inference are being developed. However, as the characteristics and constraints of each hardware increase difficulties in developing IoT applications, the development of an integrated platform is required. In this paper, we propose a tool for automatically generating components based on artificial neural networks and spiking neural networks as well as IoT technologies to be compatible with open platforms. The proposed component automatic generation tool supports the creation of components considering the characteristics of various hardware devices through the virtual component layer of IoT and AI and enables automatic application to open platforms.

A Research on Derivation of Strategic Brain Research Areas by the AHP Approach (AHP를 이용한 뇌융합 전략분야 발굴 연구)

  • Kim, Junhuck;Suh, Dukrok;Choi, Jee Hyun;Kim, Han-Gook
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.36-44
    • /
    • 2016
  • This article serves as a guideline to the policy on Korea brain science program. Given limited resources within Korea, setting priorities in brain science topics is important in science policy. In this study, we determined the priorities of important brain science topics based on the frontier properties, innovativeness, and prospective outcome. Firstly, the significant topics were chosen after the interview with the top nationwide brain scientists, which were neuroglia, brain precision medicine, neuromorphic engineering, neuroepigenetics, and brain oscillation. Secondly, the analytic hierarchy process (AHP) survey were conducted to prioritize and assign the important weight for not only the criteria but also the research topics in pair choice evaluation. In regards to the importance among the criteria, prospects of the topic was determined to be the top criterion to ranked criterion to consider in the government investment. The priority of the research topics was determined by the order for the project to be considered in national science policy in a comparative way.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

CNN Accelerator Architecture using 3D-stacked RRAM Array (3차원 적층 구조 저항변화 메모리 어레이를 활용한 CNN 가속기 아키텍처)

  • Won Joo Lee;Yoon Kim;Minsuk Koo
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.234-238
    • /
    • 2024
  • This paper presents a study on the integration of 3D-stacked dual-tip RRAM with a CNN accelerator architecture, leveraging its low drive current characteristics and scalability in a 3D stacked configuration. The dual-tip structure is utilized in a parallel connection format in a synaptic array to implement multi-level capabilities. It is configured within a Network-on-chip style accelerator along with various hardware blocks such as DAC, ADC, buffers, registers, and shift & add circuits, and simulations were performed for the CNN accelerator. The quantization of synaptic weights and activation functions was assumed to be 16-bit. Simulation results of CNN operations through a parallel pipeline for this accelerator architecture achieved an operational efficiency of approximately 370 GOPs/W, with accuracy degradation due to quantization kept within 3%.

Recent Trends in Low-Temperature Solution-Based Flexible Organic Synaptic Transistors Fabrication Processing (저온 용액 기반 유연 유기 시냅스 트랜지스터 제작 공정의 최근 연구 동향)

  • Kwanghoon Kim;Eunho Lee;Daesuk Bang
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.43-49
    • /
    • 2024
  • In recent years, the flexible organic synaptic transistor (FOST) has garnered attention for its flexibility, biocompatibility, ease of processability, and reduced complexity, which arise from using organic semiconductors as channel layers. These transistors can emulate the plasticity of the human brain with a simpler structure and lower fabrication costs compared to conventional inorganic synaptic devices. This makes them suitable for applications in next-generation wearable devices and soft robotics technologies. In FOST, the organic substrate is sensitive to the device preparation temperature; high-temperature treatment processes can cause thermal deformation of the organic substrate. Therefore, low-temperature solution-based processing techniques are essential for fabricating high-performance devices. This review summarizes the current research status of low-temperature solution-based FOST devices and presents the problems and challenges that need to be addressed.