• Title/Summary/Keyword: NeuroIS

Search Result 991, Processing Time 0.032 seconds

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

Development of Inference Algorithm for Bead Geometry in GMAW using Neuro-Fuzzy (Neuro-Fuzzy를 이용한 GMA 용접의 비드형상 추론 알고리즘 개발)

  • 김면희;이종혁;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.608-611
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.

  • PDF

Control of Convergence for Deflection Yoke Using Neuro-Fuzzy Model (뉴로 퍼지 모델을 이용한 편향요크의 RGB색 일치에 대한 제어)

  • 정병묵;임윤규;정창욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.19-27
    • /
    • 1998
  • Color Display Tube (CDT) used in computer monitors, consists of many components. Deflection Yoke(DY) among them supplies the vertical and horizontal magnetic fields so that the spatial trajectories of electron beams are deflected according to the synchronization signals. If the magnetic fields are not correctly formed, there will be color blurring or blooming by a mis-convergence of each beam and the color image on screen may not be clear. Therefore, in the manufacture of DY. its quality is strictly examined to get the desired convergence and the occurred mis-convergence can be cured by sticking ferrite sheets on the inner part of DY. However, because it needs expert's knowledge and experience to find the proper position of the sheet, this article introduces an intelligent controller that the knowledge-base represented by a neuro-fuzzy model is used to find the optimal position of the ferrite sheet for the convergence.

  • PDF

Recurrent Neuro-Sweet Disease Associated with Preceding Upper Respiratory Infection: a Case Study

  • Suh, Hie Bum;Kim, Hak Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.3
    • /
    • pp.187-193
    • /
    • 2018
  • Sweet's syndrome also known as acute neutrophilic dermatosis is a multisystem inflammatory disorder characterized by fever, malaise, leukocytosis, and skin lesions. Sweet's syndrome affects multiple organs though only rarely does it affect the central nervous system (CNS) when it does it is called Neuro-Sweet disease (NSD). We report on a case study of a biopsy-proven NSD in a 50 year old man. Serial magnetic resonance imaging (MRI) showed repeated CNS involvement of Sweet's syndrome after a respiratory tract infection preceded it. On the MRI, T2 hyperintense lesions occurred at multiple sites and disappeared after steroid therapy.

The Design of Neuro Controlled Active Suspension (신경회로망을 이용한 능동형 현가장치 제어기 설계)

  • 오정철;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.414-419
    • /
    • 1994
  • In recent years, there has been an increasing intest in control of active automotive suspension systems with a goal of improving the ride comfort and safety. Many approaches for these purposes have used linearized models of the suspension's dynamics, allowing the use of linear control theory. However, the linearized model does not well descriibe the actual system behavior which is inherently nonlinear. The object of this study is to develop a neuro controlled active suspension for the ride quality improvement. After obtaining active control law using optimal control theory, we use the artificial neural network to train the neuro controller to learn the relation of road input and control force. Form the numerical results, we found that back propagation learning does show good pattern matching and vertical acceleration of the driver's seat and sprung mass.

  • PDF

Double Gate MOSFET Modeling Based on Adaptive Neuro-Fuzzy Inference System for Nanoscale Circuit Simulation

  • Hayati, Mohsen;Seifi, Majid;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.530-539
    • /
    • 2010
  • As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, quantum mechanical effects are expected to become more and more important. Accurate quantum transport simulators are required to explore the essential device physics as a design aid. However, because of the complexity of the analysis, it has been necessary to simulate the quantum mechanical model with high speed and accuracy. In this paper, the modeling of double gate MOSFET based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The ANFIS model reduces the computational time while keeping the accuracy of physics-based models, like non-equilibrium Green's function formalism. Finally, we import the ANFIS model into the circuit simulator software as a subcircuit. The results show that the compact model based on ANFIS is an efficient tool for the simulation of nanoscale circuits.

A Neuro-Fuzzy System Reconstructing Nonlinear functions from Chaotic Signals

  • Eguchi, Kei;Ueno, Fumio;Tabata, Toru;Zhu, Hong-Bin;Nagahama, Kaeko
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1021-1024
    • /
    • 2000
  • In this paper, a neuro-fuzzy system for quantitative characterization of chaotic signals is proposed. The proposed system is differ from the previous methods in that the nonlinear functions of the nonlinear dynamical systems are calculated as the invariant factor. In the proposed neuro-fuzzy system, the nonlinear functions are determined by supervised learning. From the reconstructed nonlinear functions, the proposed system can generate extrapolated chaotic signals. This feature will help the study of nonlinear dynamical systems which require large number of chaotic data. To confirm the validity of the proposed system, nonlinear functions are reconstructed from 1-dimensional and 2-dimensional chaotic signals.

  • PDF

Speed Control of a Direct Drive Motor Using a Neuro-Controller (신경제어기를 이용한 직접구동모터의 속도제어)

  • Cho, Jeong-Ho;Lee, Dong-Wook;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1050-1052
    • /
    • 1996
  • This paper presents a neuro-control algorithm for the speed control of a direct drive motor without the knowledge of the dynamics of the motor and the characteristics of a nonlinear load. In the field of motor control, it is not possible to directly use the back-propagation method in order to train a network since the desired output of the network is not known. Hence, we propose an extended back-propagation algorithm to force the closed loop system to give desired results. Experimental results shown that the proposed neuro-controller can reduce the unknown load effects and have the good velocity tracking capabilities.

  • PDF

Implementation of a Sightseeing Multi-function Controller Using Neural Networks

  • Jae-Kyung, Lee;Jae-Hong, Yim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • This study constructs various scenarios required for landscape lighting; furthermore, a large-capacity general-purpose multifunctional controller is designed and implemented to validate the operation of the various scenarios. The multi-functional controller is a large-capacity general-purpose controller composed of a drive and control unit that controls the scenarios and colors of LED modules and an LED display unit. In addition, we conduct a computer simulation by designing a control system to represent the most appropriate color according to the input values of the temperature, illuminance, and humidity, using the neuro-control system. Consequently, when examining the result and output color according to neuro-control, unlike existing crisp logic, neuro-control does not require the storage of many data inputs because of the characteristics of artificial intelligence; the desired value can be controlled by learning with learning data.

Intercostal Neuralgia and Spinal Cord Compression Symptom due to Spinal Tumor -A Case Report- (척추 종양에 의한 늑간 신경통 및 척수 압박 증상 -증례 보고-)

  • Lee, Hyo-Keun;Shin, Dong-Yeop;Lee, Hee-Jeon;Kim, Chan
    • The Korean Journal of Pain
    • /
    • v.7 no.2
    • /
    • pp.287-291
    • /
    • 1994
  • A 49 years old male patient was admitted to our neuro-pain clinic with symptoms of left 11th intercostal neuralgic pain and low back pain that developed 2 months prior to admission. Upon initial physical examination, motor weakness or sensory deficit were absent. Intercostal neuralgic pain improved significantly after we performed thoracic root thermocoagulation. However on the afternoon of the procedure the patient started to experience voiding difficulty, saddle anesthesia and rapidly progressing motor weakness and hypoesthesia that involved the lower back area and the lower extremities for three days. Based on these symptoms spinal cord compression was suspected and subsequently plain T-L spine X-rays and T-L spine MRI were performed. A spinal tumor that appeared metastatic in origin was seen at the T11 and T12 level. Liver ultrasonography demonstrated the presence of a $4{\times}4cm$ sized ill defined mass in the posterior segment of the right lobe. The patient was diagnosed to have hepatocellular carcinoma after needle aspiration biopsy and cytologic studies. Further orthopedic surgery was recommended but as the patient rejected any further treatment and examination, it was not possible to confirm the primary focus of the tumor. However as metastasis of a primary liver tumor to the spine is a rare occurrence, some other primary focus of metastasis or even a malignant primary tumor of the spine is more likely to explain this patient's condition.

  • PDF