Engineering problems are inherently imprecision tolerant. Biologically inspired soft computing methods are emerging as ideal tools for constructing intelligent engineering systems which employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms for dealing with uncertainty. The fundamental issues associated with engineering applications of the emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for neural network representation is presented and recent developments on adaptive modeling of neural networks, specifically nested adaptive neural networks for constitutive modeling are discussed.
Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.28
no.11
/
pp.51-57
/
2014
This paper presents an algorithmic type computing technique of process coefficient in predicting model of temperature for reheating furnace and also suggests a design method of neural network model to find an adequate value of process coefficient for arbitrary operating conditions including test conditons. The proposed neural network use furnace temperature, line speed and slab information as input variables, and process coefficient is output variable. Reasonable process coefficients can be obtained by an algorithmic procedure proposed in this paper using process data gathered at test conditons. Also, neural network model output equal process coefficient under same input conditions. This means that adquate process coefficients can be found by only computing neural network model without additive test even if operating conditions vary.
In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.
KIPS Transactions on Software and Data Engineering
/
v.9
no.6
/
pp.177-186
/
2020
Recent advances in deep learning technology have improved image recognition performance in the field of computer vision, and serverless computing is emerging as the next generation cloud computing technology for event-based cloud application development and services. Attempts to use deep learning and serverless computing technology to increase the number of real-world image recognition services are increasing. Therefore, this paper describes how to develop an efficient deep learning based image recognition service system using serverless computing technology. The proposed system suggests a method that can serve large neural network model to users at low cost by using AWS Lambda Server based on serverless computing. We also show that we can effectively build a serverless computing system that uses a large neural network model by addressing the shortcomings of AWS Lambda Server, cold start time and capacity limitation. Through experiments, we confirmed that the proposed system, using AWS Lambda Serverless Computing technology, is efficient for servicing large neural network models by solving processing time and capacity limitations as well as cost reduction.
Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
International Journal of Control, Automation, and Systems
/
v.2
no.2
/
pp.189-200
/
2004
In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.144-150
/
2020
Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.
Amal Alshahrani;Sumayyah Albarakati;Reyouf Wasil;Hanan Farouquee;Maryam Alobthani;Someah Al-Qarni
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.11-20
/
2024
While artificial neural networks are adept at identifying patterns, they can struggle to distinguish between actual correlations and false associations between extracted facial features and criminal behavior within the training data. These associations may not indicate causal connections. Socioeconomic factors, ethnicity, or even chance occurrences in the data can influence both facial features and criminal activity. Consequently, the artificial neural network might identify linked features without understanding the underlying cause. This raises concerns about incorrect linkages and potential misclassification of individuals based on features unrelated to criminal tendencies. To address this challenge, we propose a novel region-based training approach for artificial neural networks focused on criminal propensity detection. Instead of solely relying on overall facial recognition, the network would systematically analyze each facial feature in isolation. This fine-grained approach would enable the network to identify which specific features hold the strongest correlations with criminal activity within the training data. By focusing on these key features, the network can be optimized for more accurate and reliable criminal propensity prediction. This study examines the effectiveness of various algorithms for criminal propensity classification. We evaluate YOLO versions YOLOv5 and YOLOv8 alongside VGG-16. Our findings indicate that YOLO achieved the highest accuracy 0.93 in classifying criminal and non-criminal facial features. While these results are promising, we acknowledge the need for further research on bias and misclassification in criminal justice applications
The principal context of this research is the approach to an artificial neural network algorithm which solves multivariable nonlinear equation systems by estimating the state of line power flow. First a dynamical neural network with feedback is used to find the minimum value of the objective function at each iteration of the state estimator algorithm. In second step a two-layer neural network structures is derived to implement all of the different matrix-vector products that arise in neural network state estimator analysis. For hardware requirements, as they relate to the total number of internal connections, the architecture developed here preserves in its structure the pronounced sparsity of power networks for which state the estimator analysis is to be carried out. A principal feature of the architecture is that the computing time overheads in solution are independent of the dimensions or structure of the equation system. It is here where the ultrahigh-speed of massively parallel computing in neural networks can offer major practical benefit.
Since telephone channel has bandlimited frequency characteristics, speech signal over the telephone channel shows degraded speech quality. In this paper, we propose an algorithm using neural network to reconstruct wideband speech from its narrowband version. Although single neural network is a good tool for direct mapping, it has difficulty in training for vast and complicated data. To alleviate this problem, we modularize the neural networks based on appropriate clustering of the acoustic space. We also introduce fuzzy computing to compensate for probable misclassification at the cluster boundaries. According to our simulation, the proposed algorithm showed improved performance over the single neural network and conventional codebook mapping method in both objective and subjective evaluations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.