
658  |  	﻿� ETRI Journal. 2020;42(5):658–668.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Recently, deep neural networks (DNNs) have received con-
siderable attention owing to their high accuracy and reliable
results. They have been utilized in numerous applications
such as computer vision [1], speech recognition [2], natural
language processing [3], and network traffic classification
[4]. Traditionally, application services based on DNN models
have been executed in a central cloud server as they require
enormous computing and memory resources. In a central
cloud architecture, raw data generated at end devices are de-
livered to a central cloud for preprocessing and are processed
through a DNN model. The inference result is then provided
to the users as a service.

In a central cloud architecture, the cloud simultaneously
handles big data, such as images, videos, and audio record-
ings, generated from various end devices, such as cars, sen-
sors, cameras, and Internet-of-Things (IoT) devices. This
leads to prolonged response times and exhaustion of the
network bandwidth between the cloud and end devices.
Moreover, the amount of data worldwide is expected to reach
163 ZB, which is 10 times more than it is now, owing to nu-
merous IoT artificial intelligence (AI) services and an explo-
sive increase in the number of smart devices [5].

To address this impending problem, edge computing is
regarded as a promising infrastructure that can provide ef-
ficient services to end devices. In addition, edge computing
alleviates the processing burden of a central cloud. In an edge

Received: 24 March 2020  |  Revised: 4 August 2020  |  Accepted: 24 August 2020

DOI: 10.4218/etrij.2020-0112

S P E C I A L I S S U E

Performance analysis of local exit for distributed deep neural
networks over cloud and edge computing

Changsik Lee   | Seungwoo Hong  | Sungback Hong  | Taeyeon Kim

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

Hyper-connected Communication,
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea

Correspondence
Changsik Lee, Hyper-connected,
Communication Research Laboratory,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea.
Email: cslee2624@etri.re.kr

Funding information
ICT R&D Program of MSIT/IITP, Rep. of
Korea, Grant No. 2018-0-01502.

In edge computing, most procedures, including data collection, data processing, and
service provision, are handled at edge nodes and not in the central cloud. This de-
creases the processing burden on the central cloud, enabling fast responses to end-
device service requests in addition to reducing bandwidth consumption. However,
edge nodes have restricted computing, storage, and energy resources to support com-
putation-intensive tasks such as processing deep neural network (DNN) inference.
In this study, we analyze the effect of models with single and multiple local exits
on DNN inference in an edge-computing environment. Our test results show that a
single-exit model performs better with respect to the number of local exited samples,
inference accuracy, and inference latency than a multi-exit model at all exit points.
These results signify that higher accuracy can be achieved with less computation
when a single-exit model is adopted. In edge computing infrastructure, it is therefore
more efficient to adopt a DNN model with only one or a few exit points to provide a
fast and reliable inference service.

K E Y W O R D S

convolutional neural networks, deep neural networks, edge computing, inference performance,
multi-exit, single-exit

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0002-3825-7317
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:cslee2624@etri.re.kr

     |  659LEE et al.

computing infrastructure, most of the procedures, including
data collection, information processing, and service provi-
sion, are handled at edge nodes (eg, a server attached to an
access point or a network gateway), decreasing the process-
ing burden on the central cloud. Because the edge nodes are
distributed near the end devices, response times to end-de-
vice service requests are short and bandwidth consumption
is reduced. Recently, edge computing has been utilized as an
infrastructure for ultra-low-latency services such as self-driv-
ing cars, the Tactile Internet, virtual reality, and augmented
reality.

However, in contrast to cloud computing, the edge nodes
in edge computing have limited computing, storage, and
energy resources. Therefore, edge computing has practi-
cal challenges in providing AI services that entail compu-
tation-intensive tasks such as processing a DNN inference.
To overcome these challenges, many studies have been
conducted that focus on improving the efficiency of DNN
inference [6,7]. For example, for fast and low-power DNN
inference at edge nodes, network compression schemes and
DNN architecture optimization have been proposed [8–12].
These network compression schemes aim to reduce the total
number of DNN model parameters and thus minimize the
amount of computation required to perform inference.

Recently, several researchers have proposed methods that
partition DNN computation between the central cloud and mo-
bile devices at the granularity of neural network (NN) layers for
collaborative intelligence between the central cloud and mobile
edge. For example, [13] proposed a lightweight scheduler that
automatically identifies the ideal partition points in DNNs and
orchestrates the distribution of computation between the mobile
device and the cloud server. Reference [14] proposed distrib-
uting DNNs over distributed computing hierarchies consisting
of the cloud, edge, and end devices. The authors adopted a
local exit mechanism supported by the open source framework
BranchyNet [15]. Using this local exit mechanism, they clas-
sify the samples and exit them locally at the edge or end device
when the inference result is confident. Moreover, they offload
the rest of the samples to the cloud when additional process-
ing is required. Reference [16] presented a collaborative DNN
co-inference framework using end devices and edge nodes that
jointly optimizes DNN partitioning and right-sizing through
local exiting in an on-demand manner. The researchers also
demonstrated the effectiveness of their proposed framework via
an implementation and evaluations on a Raspberry Pi.

The existing approaches aim to reduce DNN computation
while minimizing any loss of accuracy. However, they do not
consider the effects of a local exit on inference performance
in terms of accuracy and latency. In particular, the appropriate
number of exit points to achieve a fast and reliable inference
result is not considered. Understandably, a DNN model with
multiple exit points has the distinction that it can dynamically
select an optimal exit point from among various exit points

without the model requiring any modifications. However, it
imposes additional computational complexity on the edge to
find the optimal exit point and the complexity increases in
proportion to the number of available exit points.

To mitigate these concerns, we analyzed the performance
of local exits for a distributed DNN over the cloud and edge.
Specifically, we generated eight convolutional neural network
(CNN) models with single exit points, each with different exit
point locations. (We refer to these models as single exit mod-
els (SEMs).) We also generated a CNN model with eight exit
points, referred to as the multi-exit model (MEM), with the lo-
cations of the exit points corresponding to those of the SEMs.

For the performance evaluation, we established a test en-
vironment using Docker containers consisting of a test node,
an edge node, and a cloud node. Our test results show that the
SEMs performed better than the MEM at all exit points in all
aspects, including the number of local exit samples, inference
accuracy, and inference latency. These results indicate higher
accuracy can be achieved with less computation if we adopt a
DNN model with a single exit point rather than a model with
too many exit points. In other words, to provide fast and reliable
inference service using a DNN model in an edge computing
infrastructure, it is most efficient to adopt a model with one or
only a few exit points. Moreover, from the performance results,
we confirmed the need for a specific mechanism to handle dif-
ficult samples in order to efficiently exploit the resources for
other, easier samples and provide low-latency service.

The remainder of this paper is organized as follows:
Section 2 provides background on aspects of the present topic
including edge computing, CNNs, and local exits for distrib-
uted DNNs. Section 3 introduces the methodology used for
local exit evaluation. Section 4 describes the performance
test conducted and analyzes the results obtained. Finally, con-
cluding remarks are presented in Section 5.

2  |   BACKGROUND

2.1  |  Edge computing

In an edge computing infrastructure, most of the procedures
are handled at edge nodes—including data collection, data
processing, and service provision—decreasing the processing
burden on the central cloud. Because edge nodes are distrib-
uted near end devices, fast responses are achieved to end-de-
vice service requests with reduced bandwidth consumption.

As edge computing has recently been receiving more at-
tention, various standard group and network vendors have
begun to adopt it. Mobile edge computing (MEC) standard-
ization is in progress by the European Telecommunications
Standards Institute (ETSI) to add edge computing func-
tionality to 5G networks [17–19]. Additionally, the
International Telecommunication Union-Telecommunication

660  |     LEE et al.

(ITU-T) standardization sector has started to develop in-
telligent edge computing with machine learning to support
AI [20]. Furthermore, various edge computing initiatives,
such as the OpenFog Consortium driven by Cisco [21,22],
Open Edge Computing Initiative [23–25], Edge Computing
Consortium [26], and Industrial Internet Consortium [27],
have recently begun in the industry.

2.2  |  Convolutional neural networks

A standard CNN consists of several NN layers such as con-
volution layers, normalization layers, pooling layers, acti-
vation layers, and fully connected layers. The convolution
layers extract simple feature maps from input data by execut-
ing convolution operations with convolutional filters. Next,
extracted feature maps are processed through activation lay-
ers (such as rectified linear units (ReLUs)), and then, the size
of the feature maps is decreased through normalization and
pooling operations. By repeating these procedures, the CNN
model captures a high-level representation of the input data
and that is then forwarded to fully connected layers to return
the inference result. Various CNN models have recently been
proposed to improve performance in computer vision tasks
such as image classification (eg, LeNet [28], AlexNet [29],
VGGNet [30], GoogLeNet [31], and ResNet [32]) and object
detection (eg, RCNN [33], Fast RCNN [34], Faster RCNN
[35], SPP Net [36], and YOLO [37]).

2.3  |  Local exit for distributed DNN

Reference [15] proposed a solution to classify input samples
at earlier points in a NN, called local exit points, using an en-
tropy-based confidence criterion. In the proposed solution, if
a sample is deemed to be confident at a local exit point, based
on the entropy of the computed probability vector for target
classes, then it is locally classified. In this case, the higher NN
layers perform no further computation. In previous work [14],
exit points could be placed at physical boundaries (such as be-
tween the last NN layer in an end device and the first NN layer
in the next higher node of the distributed computing hierarchy,
namely the edge or the cloud). Using the local exit framework,
input samples that can be confidently classified will exit lo-
cally, thereby achieving a fast response and reducing network
communication to the next physical boundary.

3  |   METHODOLOGY FOR LOCAL
EXIT EVALUATION

In this section, we describe the design of the local exit frame-
work and then explain the model training and model inference

procedures. Figure 1 shows the standard CNN model archi-
tecture without local exit, which is traditionally deployed at
the central cloud. After the input layer, samples are processed
through the convolutional blocks for feature extraction. Each
convolutional block includes two repetitions of the follow-
ing: convolutional layer + normalization layer + activation
layer. In the activation layer, we use the ReLU function.
Finally, the extracted features are processed through the fully
connected block consisting of an average pooling layer and
a fully connected layer to compute the probability vector for
target classes. The class with the highest probability is de-
cided as the final inference result, herein referred to as cloud
exit because the result is the outcome of the last NN layer.

3.1  |  Design of local exit
evaluation framework

Figure 2 shows the architecture of SEMs where the local exit
framework is applied to the standard CNN model. We gener-
ated eight models, SEM-1 to SEM-8, with each model having
its own exit point at a different location. To inference at the
exit point, we locally added the fully connected block after
the previous convolutional block. Aside from the location of

F I G U R E 1   Standard CNN model: After the input layer, samples
are processed through the convolutional blocks for feature extraction.
The size of the feature maps is decreased through normalization
and average pooling operations. Finally, the extracted features are
processed through the fully connected layer to compute the probability
vector for target classes

conv

input

Cloud exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

Cloud

conv+norm+relu+conv
+norm+relu

avgpooling+fc

conv block

fc block

     |  661LEE et al.

the local exit point, other configurations such as model size
and the location of the cloud exit were the same.

Figure 3 shows the MEM with eight local exit points and
one cloud exit point. In the MEM, the location of each local
exit point corresponds to that of one of the SEMs. For exam-
ple, the location of exit point 1 in the MEM is the same as the
location of the exit point in SEM-1. Notably, the MEM has the
distinction that it can dynamically select the optimal exit point
from among various exit points without requiring modifica-
tions. The optimal exit point depends on the environment, such
as the current status of computing resources, service require-
ments, or network bandwidth between the cloud and edge.

3.2  |  Model training of distributed DNN

We trained each model on a single powerful server. In the
training phase, all samples were classified at each exit point,
but were also forwarded to the next layer without locally exit-
ing. Then, the losses from all the local exits and the cloud exit
were combined during backpropagation so that the entire net-
work could be jointly trained. We used the stochastic gradi-
ent descent algorithm as the optimizer and the cross-entropy
loss function for exit point losses. In this study, we allocated
equal weights to the losses from each exit point. Other train-
ing parameters are shown in Table 1. We used the CIFAR10
dataset for model training and performance evaluation.

3.3  |  Model inference of distributed DNN

In this section, we describe the model inference procedure.
First, input images are processed through several convo-
lutional blocks until the exit point for feature extraction.
Subsequently, the probability vector for target classes is
computed via the local fully connected block. Based on the
probability vector at the exit point, normalized entropy is
computed as a measure of confidence in the prediction. We
followed the description of normalized entropy from [14].

where L is the set of all possible labels and p is a probability
vector. Entropy ε has values between zero and one. For exam-
ple, ε close to zero means that it is confident about the inference
of the sample, whereas ε close to one means it is not confident.

The computed entropy is compared against the exit thresh-
old (T) to determine whether the sample should be exited at
that exit point or not. If the entropy is smaller than the exit
threshold (ie, ε < T), the inference result is reliable, and thus,
the sample is classified (local exit). Conversely, if the entropy

is larger than the exit threshold (ie, ε > T), the result of the
intermediate computation output from the previous convolu-
tional block is sent to the next convolutional block for further
processing. Then, the model performs the final inference at
the last NN layer (cloud exit). For exit procedures such as
local exit or cloud exit, the class with the highest probabil-
ity is determined to be the prediction result. Note that at the
inference phase in the MEM, only one of eight exit points
was set up to execute local exit in order to compare its perfor-
mance under the same condition as that of the SEMs.

4  |   PERFORMANCE EVALUATION

4.1  |  Test environment setup

Figure 4 shows the test environment topology based on a
Docker container consisting of three nodes: a cloud node, an
edge node, and a test node. In performance testing, the test
node sends image samples to the edge node with batch size
32. The edge node then proceeds with computation to the
exit point to determine whether the sample can exit locally.
If at a local exit point a sample is deemed confident based
on the entropy of the computed probability vector for target
classes, then it is locally classified, and the edge node sends
the input image's predicted class to the test node. Otherwise,
the edge node forwards the intermediate computation to the
cloud node for further processing. Then, the cloud node ex-
ecutes the remaining layers and sends the predicted class of
the input image to the test node. Finally, the test node ob-
tains the classification results from the edge node and cloud
node to calculate inference accuracy and latency.

To train our models, we utilized a separate training server
with a Nvidia GeForce 1080Ti and graphic driver v390.116.
Further, we carried out all performance tests by varying the
exit threshold (ie, 0.1, 0.3, 0.5, and 0.8). Note that the oppor-
tunity for local exit depends on the value of the exit thresh-
old. Although each model's performance changed with the
exit threshold, we confirmed a similar performance tendency
associated with the exit threshold among the models. In
this study, we demonstrate the performance evaluation with
a fixed exit threshold (T = 0.3). The best value for the exit
threshold depends on the NN architecture or dataset; how-
ever, determination of this best value is beyond the scope of
this study.

The different accuracy and latency measures associated
with the performance evaluation for the local and cloud exits
are defined as follows:

•	 Edge accuracy is the accuracy of the samples that exit at
local exit points.

•	 Cloud accuracy is the accuracy of the samples that exit at
the cloud node.

(1)� (p)=−

|L|∑

i= 1

pilogpi

log |L|
,

662  |     LEE et al.

•	 Overall accuracy is the average accuracy of all the test
samples. It is calculated as (sum of the corrected samples)/
(total number of samples).

•	 Edge latency is the average inference latency of the sam-
ples that exit at local exit points. It includes the time for the
procedure 1) → 2) → 3-1) in Figure 4.

•	 Cloud latency is the average inference latency of the sam-
ples that exit at the cloud node; in other words, those that
do not exit locally. It includes the time for the procedure 1)
→ 2) → 3-2) → 4)→ 5) in Figure 4.

•	 Overall latency is the average inference latency of all the test
samples. It is calculated as the time duration from sending the
first image until receiving the predicted class of the last image.

4.2  |  Performance of SEMs

In this section, we analyze the inference performance of
each SEM, such as the number of samples exited locally,
the inference accuracy, and the inference latency. As shown
in Figure 5A, models with exit points in the rear exited lo-
cally more frequently. In particular, for SEM-3, the number
of samples that exited locally (5383 samples) exceeded the
number of cloud-exited samples (4617 samples). This signi-
fies that models with exit points in the rear exhibit more con-
fident classification results. This is reasonable because such
models perform further computation through more NN layers
until their local exit point.

F I G U R E 2   Eight CNN models with single exit points. Each model has its exit point at a different location from that of the others: (A) SEM-1,
(B) SEM-2, (C) SEM-3, (D) SEM-4, (E) SEM-5, (F) SEM-6, (G) SEM-7, and (H) SEM-8

conv

input

Cloud exit

Local exit
conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

(A) (B) (C) (D)

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

conv

input

Cloud exit

Local exit

conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

(E) (F) (G) (H)

     |  663LEE et al.

Figure 5B shows the accuracy performance of each model.
For the abovementioned reason, models with exit points in
the rear show higher edge accuracy (eg, 87.20% in SEM-1
as compared with 95.24% in SEM-8). However, they tend to
perform worse in terms of cloud accuracy because some test
samples are difficult to classify accurately even with extensive
computation. Thus, these samples are not exited locally and
are forwarded to the cloud node. For example, in SEM-8, a
few samples (861 samples) are not exited locally even though
they are processed through most of the NN layers. Thus, these
samples are unlikely to be correctly classified through just one
more convolutional block, leading to a low cloud accuracy
(58.07%). In contrast, in models with local exit points in the
front, such as SEM-1 and SEM-2, samples that are not exited
locally have a high probability of being correctly classified
through sufficient computation in the cloud node. Notably,
these samples lead to a higher cloud accuracy (88.51% and
86.13%, respectively) than that of SEM-8. However, this en-
tails additional communication latency and computational
latency in the cloud node as well as additional energy con-
sumption of the edge node to enable further processing in the
cloud node. This signifies that in the case of difficult samples,
resources such as computing, networking, storage, and energy
are wasted when processing is further performed in the cloud
node. Thus, we need a specific mechanism to handle them (eg,
to drop a sample if the entropy is over the drop threshold) in
order to efficiently use the resources for other easier samples
and provide low-latency service.

Overall accuracy is the measure of how well the model is
jointly optimized for local exit and cloud exit losses during
model training. As shown in Figure 5B, models with exit
points in the rear tended to show higher overall accuracy.
For example, SEM-3 showed the worst overall accuracy
(86.04%) whereas SEM-8 showed the best overall accuracy
(92.04%).

Figure 5C shows the inference latency performance of each
model. SEM-1 showed the shortest edge latency because it has
the smallest number of computational layers until its exit point.
Nevertheless, as shown in Figure 5A, it also has the smallest

F I G U R E 3   MEM with eight exit points. The locations of the exit
points correspond to those of the SEMs

conv

input

Cloud exit

Local exit 1
conv

conv

conv

conv

conv

conv

conv

conv

agvpool

conv

fc

fc

Local exit 2fc

Local exit 3fc

Local exit 4fc

Local exit 5fc

Local exit 7fc

Local exit 8fc

Local exit 6fc

T A B L E 1   Training parameters

Parameters Value

Learning rate 0.1
Momentum 0.9
Weight decay 10–4

Batch size 32
Training epoch 2000
Number of training samples 50 000
Number of test samples 10 000

F I G U R E 4   Test environment topology
based on a Docker container. It consists of
three nodes: a cloud node, an edge node, and
a test node

1) Send test images to edge node

3-2) Send intermediate
computation to cloud node

4) Processing after exit point

6) Summary test result

Edge node

Cloud node

Test node

2) Processing before exit point

<cifar10 dataset>

664  |     LEE et al.

number of samples exited locally, as most of the samples are
exited on the cloud node. Consequently, SEM-1 exhibits the
longest overall inference time (gray bar). In respect of cloud
latency, all models showed similar performance as they have
the same NN layer depth until the cloud exit point. Although
SEM-5 showed the shortest overall latency (3.795 ms) among
SEMs, this does not mean that it guarantees the best latency in
a different NN model or dataset. Furthermore, overall latency
performance would be affected by a dynamically changing net-
work bandwidth between the edge node and cloud node, lead-
ing to a change in the optimal exit point.

4.3  |  Performance of MEM

In this section, we evaluate the inference performance of the
MEM with eight local exit points. As mentioned in Section
3.2, during the model training, all samples are classified at
each exit point but are also forwarded to the next layer with-
out locally exiting. Then, the losses from the eight local exits
and the cloud exit are combined during backpropagation so
that the entire network is jointly trained. For model inference,
one of the eight exit points is set up to perform the local exit.

Figure 6 shows the inference performance of the MEM
when varying the location of the exit point. Generally, the
MEM shows similar performance tendencies as those of the
SEMs. However, it has a smaller number of locally exited
samples and a lower inference accuracy compared with the
SEM at the corresponding exit point. In overall accuracy, it
notably showed the worst performance (84.31%) at exit point
2 and the best performance (86.10%) at exit point 8. This
signifies that the existence of needlessly many local exit
points impairs the optimality of the entire NN during model
training.

Figure 6C shows the inference latency of the MEM when
the location of the activated exit point is varied. The MEM
shows the shortest overall latency (4.82 ms) at exit point 3,
whereas it shows an overall latency of 4.886 ms at exit point
5. Note that exit point 5 is the same point at which the SEM

F I G U R E 5   Inference performance of SEMs: (A) Number of
samples exited locally, (B) inference accuracy, and (C) inference
latency

0

1

2

3

4

5

6

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

La
te

nc
y

(m
s)

Model

Edge latency Cloud latency Overall latency

50

60

70

80

90

100

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

A
cc

ur
ac

y
(%

)

Model

Edge accuracy Cloud accuracy Overall accuracy

0

2000

4000

6000

8000

10000

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

N
um

be
r o

f s
am

pl
es

Model

Num of local exit Num of cloud exit

(A)

(B)

(C)

F I G U R E 6   Inference performance of the MEM: (A) Number
of samples exited locally, (B) inference accuracy, and (C) inference
latency

0
1
2
3
4
5
6
7
8

Exit
point 1

Exit
point 2

Exit
point 3

Exit Exit
point 5

Exit
point 6

Exit
point 7

Exit
point 8

La
te

nc
y

(m
s)

point 4
Exit point

Edge latency Cloud latency Overall latency

50

60

70

80

90

100

Exit
point 1

Exit
point 2

Exit
point 3

Exit Exit
point 5

Exit
point 6

Exit
point 7

Exit
point 8

A
cc

ur
ac

y
(%

)

point 4

Exit point

Edge accuracy Cloud accuracy Overall accuracy

0

2000

4000

6000

8000

10000

Exit
point 1

Exit
point 2

Exit
point 3

Exit Exit
point 5

Exit
point 6

Exit
point 7

Exit
point 8

N
um

be
r o

f d
at

as
et

point 4

Exit point

Num of local exit Num of cloud exit

(A)

(B)

(C)

     |  665LEE et al.

exhibited the shortest overall latency of 3.795 ms (in SEM-
5). As expected, the reason why the MEM showed longer
overall latency than the SEM at the corresponding exit point
is that the MEM has a smaller number of samples exited lo-
cally than the SEM, as shown in Figure 6A.

From the performance results, we verified that the exces-
sive number of local exit points in the DNN model leads to
performance degradation such as low inference accuracy and
slow inference time. The overall accuracy becomes particu-
larly worse (from 92.04% to 86.10%) at exit point 8. This re-
sult is owing to the fact that for training the MEM, the losses
from the eight local exits and the cloud exit are combined
during backpropagation so that the entire network is jointly
trained. That is, model weights are updated for the optimiza-
tion of all exit points, not for a specific exit point. In contrast,
model weights are updated for the optimization of only one
exit point and the cloud exit during the training of the SEM.
Therefore, SEM exhibits a higher inference accuracy at a
specific exit point than that exhibited by MEM after model
training.

4.4  |  Performance comparison for different
exit thresholds

In this section, we present the analysis of the inference per-
formance of each model for different exit thresholds such as
T = 0.1, 0.3, and 0.5. Figure 7 shows the performance results
of the SEMs. As shown in Figure 7A, samples have an in-
creased possibility of being locally exited under a higher exit
threshold (T = 0.5), whereas fewer samples are locally exited
under a lower exit threshold (T = 0.1). Figure 7B shows the
inference accuracy with respect to different exit thresholds. All
the accuracy metrics, including edge accuracy, cloud accuracy,
and overall accuracy, increase as the exit threshold decreases.
Notably, the edge accuracy and overall accuracy show the
largest performance gap in SEM-1. These results are reason-
able because a low exit threshold requires more confidence
regarding the prediction to exit samples locally. That is, only
samples with extremely high confidence are locally exited
under a lower exit threshold (T = 0.1), and most of the samples
are sent to the cloud for further processing. In contrast, some
samples with uncertainty are locally exited under a higher exit

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 000

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

N
um

be
ro

fs
am

pl
es

Model

Num of local exit (= 0.1 Num of local exit (= 0.3) Num of local exit (= 0.5)

40

50

60

70

80

90

100

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

A
cc

ur
ac

y
(%

)

Model

Edge accuracy (= 0.1)
Edge accuracy (= 0.3)
Edge accuracy (= 0.5)

Cloud accuracy (= 0.1)
Cloud accuracy (= 0.3)
Cloud accuracy (= 0.5)

Overall accuracy (= 0.1)
Overall accuracy (= 0.3)
Overall accuracy (= 0.5)

0

1

2

3

4

5

6

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5 SEM-6 SEM-7 SEM-8

(
La

te
nc

y
m

s)

Model

Overall latency (= 0.1) Overall latency (= 0.3) Overall latency (= 0.5)

(A)

(B)

(C)

F I G U R E 7   Inference performance of the SEMs for different exit
thresholds (T = 0.1, T = 0.3, and T = 0.5): (A) Number of samples
exited locally, (B) inference accuracy, and (C) overall latency

F I G U R E 8   Inference performance of MEM for different exit
thresholds (T = 0.1, T = 0.3, and T = 0.5): (A) Number of samples
exited locally, (B) inference accuracy, and (C) overall latency

0

1

2

3

4

5

6

7

Exit point 1 Exit point 2 Exit point 3 Exit point 4 Exit point 5 Exit point 6 Exit point 7 Exit point 8

La
te

nc
y

(m
s)

Exit point

Overall latency (= 0.1) Overall latency (= 0.3) Overall latency (= 0.5)

40

50

60

70

80

90

100

Exit point 1 Exit point 2 Exit point 3 Exit point 4 Exit point 5 Exit point 6 Exit point 7 Exit poin

A
cc

ur
ac

y
(%

)

Exit point

Edge accuracy (= 0.1)
Edge accuracy (= 0.3)
Edge accuracy (= 0.5)

Cloud accuracy (= 0.1)
Cloud accuracy (= 0.3)
Cloud accuracy (= 0.5)

Overall accuracy (= 0.1)
Overall accuracy (= 0.3)
Overall accuracy (= 0.5)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 000

Exit point 1 Exit point 2 Exit point 3 Exit point 4 Exit point 5 Exit point 6 Exit point 7 Exit point 8

N
um

be
ro

fs
am

pl
es

Exit point

Num of local exit (= 0.1) Num of local exit (= 0.3) Num of local exit (= 0.5)

(A)

(B)

(C)

666  |     LEE et al.

threshold (T = 0.5), leading to low accuracy. Additionally, as
shown in Figure 7C, the overall inference latency increases
as the exit threshold decreases. Furthermore, we verified that
the MEM also shows similar performance results as the exit
threshold is varied, as shown in Figure 8.

4.5  |  Comparison of training accuracy

In this section, we compare the training accuracy of the SEMs
and MEM. Note that in the training phase, all samples are clas-
sified at each exit point, but are also forwarded to the next layer
without locally exiting. Figure 9 shows the accuracy of the
SEMs and MEM at each exit point as the number of training

epochs increase. In general, the accuracy of the SEM (solid line)
is higher than that of the MEM (dotted line) in a correspond-
ing exit point location. At the end of training, the SEM with an
earlier exit point even outperformed the MEM with a later exit
point (eg, SEM-3 outperforms the MEM with exit point 4).

Figure 10 shows the edge accuracy and cloud accuracy at
the end of the training phase. The lines signify cloud accuracy,
whereas the bars signify edge accuracy. Note that the cloud
accuracy of the MEM is fixed at 88.58%. In both accuracy
metrics, the SEM outperformed the MEM at the correspond-
ing exit points. In particular, the edge accuracy showed the
largest performance gap at exit point 2 (SEM-2); for example,
72.65% in SEM-2 and 64.59% in the MEM. Additionally, as
mentioned above, the edge accuracy of SEM-3 (77.76%) was

F I G U R E 9   Accuracy comparison at each exit point of the SEMs and MEM over training epochs

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

A
cc

ur
ac

y
(%

)

Training epochs

Exit point 1 (MEM)
Exit point 5 (MEM)
SEM-1

Exit point 2 (MEM)
Exit point 6 (MEM)
SEM-2

Exit point 3 (MEM)
Exit point 7 (MEM)
SEM-3

Exit point 4 (MEM)
Exit point 8 (MEM)
SEM-4

F I G U R E 1 0   Edge accuracy and cloud accuracy of the SEMs and MEM at the end of model training

0
10
20
30
40
50
60
70
80
90

100

Exit point 1/
SEM-1

Exit point 2/
SEM-2

Exit point 3/
SEM-3

Exit point 4/
SEM-4

Exit point 5/
SEM-5

Exit point 6/
SEM-6

Exit point 7/
SEM-7

Exit point 8/
SEM-8

A
cc

ur
ac

y
(%

)

Exit point/

Edge acc (MEM) Edge acc (SEM) Cloud acc (MEM) Cloud acc (SEM)

     |  667LEE et al.

higher than the edge accuracy of the MEM with exit point 4
(76.06%). Notably, this performance gap increased as the exit
points moved toward the rear. Furthermore, we verified that the
edge accuracy of the SEM after exit point 6 surpassed even the
cloud accuracy of the MEM. For example, the edge accuracy of
SEM-6 was 88.92%, whereas the cloud accuracy of the MEM
was 88.58%. These results indicate higher accuracy can be
achieved with less computation if we adopt a DNN model with
single exit points rather than too many exit points. Furthermore,
after SEM-7, edge accuracy was even closer to the cloud ac-
curacy in the same model. Therefore, further processing is not
required in the cloud node. For example, the edge accuracy and
cloud accuracy of SEM-7 were 90.98% and 92.10%, respec-
tively. As mentioned in Section 4.2, this result supports the need
of a specific mechanism to handle difficult samples.

5  |   CONCLUSIONS

In this study, we analyzed the effect of local exit on the in-
ference performance of DNN models in an edge computing
environment. We designed several DNN models by varying
the location and number of exit points for performance evalu-
ation. The performance test results demonstrate that a higher
accuracy is achieved with less computation if we adopt a DNN
model with a single exit point rather than one with an excessive
number of exit points. Consequently, with regard to providing
an inference service with low latency and high accuracy based
on a DNN model in an edge computing infrastructure, adopt-
ing a model with one or only a few exit points is more effi-
cient. Moreover, the performance results indicate the need for
a specific mechanism to handle difficult samples to efficiently
use the resources to infer other, easier samples and provide a
low-latency service. In this study, we allocated equal weights
for the loss from each exit point during model training. In the
future, we will conduct performance evaluation by assigning
different weights for the losses. Furthermore, we will evaluate
performance under a practical environment wherein the edge
nodes have restricted computing resources.

ACKNOWLEDGEMENTS
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) [2018-0-
01502, A Development for Intellectualized Edge Networking
based on AI].

ORCID
Changsik Lee https://orcid.org/0000-0002-3825-7317

REFERENCES
	 1.	 C. Szegedy et al., Going deeper with convolutions, in Proc. IEEE

Conf. Comput. Vision Pattern. Recogn. (Boston, MA, USA), June
2015, pp. 1–9.

	 2.	 A. van den Oord et al., WaveNet: A generative model for raw audio,
in Proc. ISCA Speech Synthesis Workshop (Sunnyvale, CA USA),
Sept. 2016.

	 3.	 D. Wang and E. Nyberg, A long short-term memory model for
answer sentence selection in question answering, in Proc. Annu.
Meeting Ass. Comput. Linguistics Int. Joint Conf. Natural
Language Process (Beijing, China), July 2015, pp. 707–712.

	 4.	 M. Kim, Supervised learning-based DDoS attacks detection: tun-
ing hyperparameters, ETRI J. 41 (2019), 560–573.

	 5.	 D. Reinsel, J. Gantz, and J. Rydning, The digitization of the world
from edge to core, White Paper US44413318, IDC (Framingham,
MA, USA), Nov. 2018, pp. 1–28.

	 6.	 M. Murshed et al., Machine learning at the network edge: A survey,
arXiv preprint, 20192019, arXiv:1908.00080.

	 7.	 Z. Zhou et al., Edge intelligence: paving the last mile of arti-
ficial intelligence with edge computing, Proc. IEEE 107 (2019),
1738–1762.

	 8.	 S. Han, H. Mao, and W. Dally, Deep compression: compressing
deep neural networks with pruning, trained quantization and huff-
man coding, in Proc. Int. Conf. Learn. Representations (San Juan,
Puerto Rico), May 2016.

	 9.	 Y. Kim et al., Compression of deep convolutional neural networks
for fast and low power mobile applications, in Proc. Int. Conf.
Learn. Representations (San Juan, Puerto Rico), May 2016.

	10.	 J. Wu et al., Quantized convolutional neural networks for mobile
devices, in Proc. IEEE Conf. Comput. Vis. Pattern Recogn. (Las
Vegas, NV, USA), 2016, pp. 4820–4828.

	11.	 N. Lane et al., Dxtk: Enabling resource-efficient deep learning
on mobile and embedded devices with the deepx toolkit, in Proc.
MobiCASE (Cambridge, UK), Dec. 2016, pp. 98–107.

	12.	 F. N. Iandola et al., Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and <0.5mb model size, arXiv preprint, 2016,
arXiv:1602.07360.

	13.	 Y. Kang et al., Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge, in Proc. Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (Xian, China), Apr. 2017, pp. 615–629.

	14.	 S. Teerapittayanon, B. McDanel, and H. T. Kung, Distributed deep
neural networks over the cloud, the edge and end devices, in Proc.
IEEE Int. Conf. Distrib. Comput. Syst. (Atlanta, GA, USA), June
2017, pp. 328–339.

	15.	 S. Teerapittayanon, B. McDanel, and H. Kung, Branchynet: Fast
inference via early exiting from deep neural networks, in Proc. Int.
Conf. Pattern Recogn. (Cancun, Mexico), Dec. 2016, pp. 2464–2469.

	16.	 E. Li, Z. Zhou, and X. Chen, Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy, in Proc.
Workshop Mobile Edge Commun. (Budapest, Hungary), Aug.
2018, pp. 31–36.

	17.	 ETSI, Executive Briefing–Mobile Edge Computing (MEC)
Initiative, Sept. 2014.

	18.	 ETSI Gs MEC-IEG 004, Mobile Edge Computing (MEC) Service
Scenarios V1.1.1, 2015.

	19.	 ETSI Gs MEC 003, Mobile Edge Computing (MEC) Framework
and Reference Architecture V1.1.1, 2016.

	20.	 ITU-T Rec. Y.3172, Architectural framework for machine learning
in future networks including IMT-2020, 2019.

	21.	 OpenFog Consortium Architecture Working Group, OpenFog ar-
chitecture overview, Open fog consortium (Tokyo, Japan), White
Paper OPFWP001.0216, Feb. 2016.

	22.	 OpenFog Consortium Architecture Working Group, Openfog refer-
ence architecture for fog computing, Open fog consortium (Tokyo,
Japan), Feb. 2017.

https://orcid.org/0000-0002-3825-7317
https://orcid.org/0000-0002-3825-7317

668  |     LEE et al.

	23.	 M. Satyanarayanan, The emergence of edge computing, Comput.
50 (2017), 30–39.

	24.	 Z. Chen et al., An empirical study of latency in an emerging class of
edge computing applications for wearable cognitive assistance, in
Proc. ACM/IEEE Symp. Edge Comput. (San Jose, CA, USA), Oct.
2017, pp. 1–14.

	25.	 J. Wang et al., Towards scalable edge-native applications, in Proc.
ACM/IEEE Symp. Edge Comput. (Rlington, VA, USA), 2019, pp.
152–165.

	26.	 Edge Computing Consortium, White paper of edge computing con-
sortium, ECC (Beijing, China), White Paper, Nov. 2016.

	27.	 S.-W. Lin et al., Industrial internet reference architecture, Ind.
Internet Consortium (IIC) (Needham, MA, USA) Tech. Rep., June.
2015.

	28.	 Y. LeCun et al., Gradient-based learning applied to document rec-
ognition, Proc. IEEE 86 (1998), 2278–2324.

	29.	 A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classifica-
tion with deep convolutional neural networks, in Proc. Conf. Neural
Inf. Process Syst. (Stateline, NV, USA), 2012, pp. 1097–1105.

	30.	 K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, arXiv preprint, 2014,
arXiv:1409.1556.

	31.	 C. Szegedy et al., Going deeper with convolutions, in Proc. IEEE
Conf. Comput. Vision Pattern Recogn. (Boston, MA, USA), June
2015, pp. 1–9.

	32.	 K. He et al., Deep residual learning for image recognition, arXiv
preprint, 2015, arXiv:1512.03385, 2015.

	33.	 R. Girshick et al., Rich feature hierarchies for accurate object detec-
tion and semantic segmentation, in Proc. IEEE Conf. Comput. Vision
Pattern Recogn. (Columbus, OH, USA), June 2014, pp. 580–587.

	34.	 R. Girshick, Fast R-CNN, in Proc. IEEE Int. Conf. Comput. Vision
(Santiago, Chile), Dec. 2015, pp. 1440–1448.

	35.	 S. Ren, Faster R-CNN: Towards real time object detection with re-
gion proposal networks, in Proc. Int. Conf. Neural Inf. Process.
Syst. (Montreal, Canada), 2015, pp. 91–99.

	36.	 K. He et al., Spatial pyramid pooling in deep convolutional net-
works for visual recognition, in Proc. Eur. Conf. Comput. Vis.
(Zurich, Switzerland), Sept. (2014), 346–361.

	37.	 J. Redmon, et al., You only look once: Unified, real time object de-
tection, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Las
Vegas, NV, USA), June 2016, pp. 779–788.

AUTHOR BIOGRAPHIES

Changsik Lee received his BS degree
in electrical engineering from Korea
University, Seoul, Rep. of Korea, in
2012, and his MS degree in electrical
engineering from the Korean
Advanced Institute of Science and
Technology, Daejeon, Republic of

Korea, in 2014. Since 2014, he has been with the
Electronics and Telecommunications Research Institute,
Daejeon, Republic of Korea, where he is currently a re-
searcher. His interests include virtual router redundancy,
OpenFlow, edge computing, and machine learning
algorithms.

Seungwoo Hong received his MS de-
gree in computer science from Pusan
National University, Pusan, Rep. of
Korea, in 2001, and his PhD degree in
computer science from Chungnam
National University, Daejeon, Rep. of
Korea, in 2011. He is currently work-

ing in the Intelligent Network Research Team at the
Electronics and Telecommunications Research Institute.
He is mainly interested in intelligent edge computing and
autonomous networks.

Sungback Hong received his BS de-
gree in electronic telecommunication
engineering from Kwangwoon
University, Seoul, Rep. of Korea, and
his MS degree in electronic engineer-
ing from Yonsei University, Seoul,
Rep. of Korea, in 1982 and 1990, re-

spectively. He received his PhD degree from Chungbuk
National University, Cheongju, Rep. of Korea, in 2008.
Since 1982, he has been with the Electronics and
Telecommunications Research Institute (ETRI) and is cur-
rently with the Network Research Department as a princi-
pal researcher. His main research interests include edge
computing, edge native applications, networking by artifi-
cial intelligence, networks for artificial intelligence, and
low-latency networks for 6G.

Taeyeon Kim received his BS and MS
degree in computer engineering from
the Chung-Ang University, Seoul,
Rep. of Korea, in 1990 and 1992 re-
spectively, and his PhD in Network
Engineering from the Chungbuk
National University, Cheongju, Rep.

of Korea, in 2008. He is currently leading the Network
Intelligence Research Section at the ETRI, Rep. of Korea.
He has been working in the area of information-centric
networking and cloud networking with network function
virtualization/software-defined network technologies
since 1992. His interests include future networks, pro-
grammable networking infrastructure, network automa-
tion, and the Internet of Things with edge networking.

