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1  |   INTRODUCTION

Recently, deep neural networks (DNNs) have received con-
siderable attention owing to their high accuracy and reliable 
results. They have been utilized in numerous applications 
such as computer vision [1], speech recognition [2], natural 
language processing [3], and network traffic classification 
[4]. Traditionally, application services based on DNN models 
have been executed in a central cloud server as they require 
enormous computing and memory resources. In a central 
cloud architecture, raw data generated at end devices are de-
livered to a central cloud for preprocessing and are processed 
through a DNN model. The inference result is then provided 
to the users as a service.

In a central cloud architecture, the cloud simultaneously 
handles big data, such as images, videos, and audio record-
ings, generated from various end devices, such as cars, sen-
sors, cameras, and Internet-of-Things (IoT) devices. This 
leads to prolonged response times and exhaustion of the 
network bandwidth between the cloud and end devices. 
Moreover, the amount of data worldwide is expected to reach 
163 ZB, which is 10 times more than it is now, owing to nu-
merous IoT artificial intelligence (AI) services and an explo-
sive increase in the number of smart devices [5].

To address this impending problem, edge computing is 
regarded as a promising infrastructure that can provide ef-
ficient services to end devices. In addition, edge computing 
alleviates the processing burden of a central cloud. In an edge 
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computing infrastructure, most of the procedures, including 
data collection, information processing, and service provi-
sion, are handled at edge nodes (eg, a server attached to an 
access point or a network gateway), decreasing the process-
ing burden on the central cloud. Because the edge nodes are 
distributed near the end devices, response times to end-de-
vice service requests are short and bandwidth consumption 
is reduced. Recently, edge computing has been utilized as an 
infrastructure for ultra-low-latency services such as self-driv-
ing cars, the Tactile Internet, virtual reality, and augmented 
reality.

However, in contrast to cloud computing, the edge nodes 
in edge computing have limited computing, storage, and 
energy resources. Therefore, edge computing has practi-
cal challenges in providing AI services that entail compu-
tation-intensive tasks such as processing a DNN inference. 
To overcome these challenges, many studies have been 
conducted that focus on improving the efficiency of DNN 
inference [6,7]. For example, for fast and low-power DNN 
inference at edge nodes, network compression schemes and 
DNN architecture optimization have been proposed [8–12]. 
These network compression schemes aim to reduce the total 
number of DNN model parameters and thus minimize the 
amount of computation required to perform inference.

Recently, several researchers have proposed methods that 
partition DNN computation between the central cloud and mo-
bile devices at the granularity of neural network (NN) layers for 
collaborative intelligence between the central cloud and mobile 
edge. For example, [13] proposed a lightweight scheduler that 
automatically identifies the ideal partition points in DNNs and 
orchestrates the distribution of computation between the mobile 
device and the cloud server. Reference [14] proposed distrib-
uting DNNs over distributed computing hierarchies consisting 
of the cloud, edge, and end devices. The authors adopted a 
local exit mechanism supported by the open source framework 
BranchyNet [15]. Using this local exit mechanism, they clas-
sify the samples and exit them locally at the edge or end device 
when the inference result is confident. Moreover, they offload 
the rest of the samples to the cloud when additional process-
ing is required. Reference [16] presented a collaborative DNN 
co-inference framework using end devices and edge nodes that 
jointly optimizes DNN partitioning and right-sizing through 
local exiting in an on-demand manner. The researchers also 
demonstrated the effectiveness of their proposed framework via 
an implementation and evaluations on a Raspberry Pi.

The existing approaches aim to reduce DNN computation 
while minimizing any loss of accuracy. However, they do not 
consider the effects of a local exit on inference performance 
in terms of accuracy and latency. In particular, the appropriate 
number of exit points to achieve a fast and reliable inference 
result is not considered. Understandably, a DNN model with 
multiple exit points has the distinction that it can dynamically 
select an optimal exit point from among various exit points 

without the model requiring any modifications. However, it 
imposes additional computational complexity on the edge to 
find the optimal exit point and the complexity increases in 
proportion to the number of available exit points.

To mitigate these concerns, we analyzed the performance 
of local exits for a distributed DNN over the cloud and edge. 
Specifically, we generated eight convolutional neural network 
(CNN) models with single exit points, each with different exit 
point locations. (We refer to these models as single exit mod-
els (SEMs).) We also generated a CNN model with eight exit 
points, referred to as the multi-exit model (MEM), with the lo-
cations of the exit points corresponding to those of the SEMs.

For the performance evaluation, we established a test en-
vironment using Docker containers consisting of a test node, 
an edge node, and a cloud node. Our test results show that the 
SEMs performed better than the MEM at all exit points in all 
aspects, including the number of local exit samples, inference 
accuracy, and inference latency. These results indicate higher 
accuracy can be achieved with less computation if we adopt a 
DNN model with a single exit point rather than a model with 
too many exit points. In other words, to provide fast and reliable 
inference service using a DNN model in an edge computing 
infrastructure, it is most efficient to adopt a model with one or 
only a few exit points. Moreover, from the performance results, 
we confirmed the need for a specific mechanism to handle dif-
ficult samples in order to efficiently exploit the resources for 
other, easier samples and provide low-latency service.

The remainder of this paper is organized as follows: 
Section 2 provides background on aspects of the present topic 
including edge computing, CNNs, and local exits for distrib-
uted DNNs. Section 3 introduces the methodology used for 
local exit evaluation. Section 4 describes the performance 
test conducted and analyzes the results obtained. Finally, con-
cluding remarks are presented in Section 5.

2  |   BACKGROUND

2.1  |  Edge computing

In an edge computing infrastructure, most of the procedures 
are handled at edge nodes—including data collection, data 
processing, and service provision—decreasing the processing 
burden on the central cloud. Because edge nodes are distrib-
uted near end devices, fast responses are achieved to end-de-
vice service requests with reduced bandwidth consumption.

As edge computing has recently been receiving more at-
tention, various standard group and network vendors have 
begun to adopt it. Mobile edge computing (MEC) standard-
ization is in progress by the European Telecommunications 
Standards Institute (ETSI) to add edge computing func-
tionality to 5G networks [17–19]. Additionally, the 
International Telecommunication Union-Telecommunication 
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(ITU-T) standardization sector has started to develop in-
telligent edge computing with machine learning to support 
AI [20]. Furthermore, various edge computing initiatives, 
such as the OpenFog Consortium driven by Cisco [21,22], 
Open Edge Computing Initiative [23–25], Edge Computing 
Consortium [26], and Industrial Internet Consortium [27], 
have recently begun in the industry.

2.2  |  Convolutional neural networks

A standard CNN consists of several NN layers such as con-
volution layers, normalization layers, pooling layers, acti-
vation layers, and fully connected layers. The convolution 
layers extract simple feature maps from input data by execut-
ing convolution operations with convolutional filters. Next, 
extracted feature maps are processed through activation lay-
ers (such as rectified linear units (ReLUs)), and then, the size 
of the feature maps is decreased through normalization and 
pooling operations. By repeating these procedures, the CNN 
model captures a high-level representation of the input data 
and that is then forwarded to fully connected layers to return 
the inference result. Various CNN models have recently been 
proposed to improve performance in computer vision tasks 
such as image classification (eg, LeNet [28], AlexNet [29], 
VGGNet [30], GoogLeNet [31], and ResNet [32]) and object 
detection (eg, RCNN [33], Fast RCNN [34], Faster RCNN 
[35], SPP Net [36], and YOLO [37]).

2.3  |  Local exit for distributed DNN

Reference [15] proposed a solution to classify input samples 
at earlier points in a NN, called local exit points, using an en-
tropy-based confidence criterion. In the proposed solution, if 
a sample is deemed to be confident at a local exit point, based 
on the entropy of the computed probability vector for target 
classes, then it is locally classified. In this case, the higher NN 
layers perform no further computation. In previous work [14], 
exit points could be placed at physical boundaries (such as be-
tween the last NN layer in an end device and the first NN layer 
in the next higher node of the distributed computing hierarchy, 
namely the edge or the cloud). Using the local exit framework, 
input samples that can be confidently classified will exit lo-
cally, thereby achieving a fast response and reducing network 
communication to the next physical boundary.

3  |   METHODOLOGY FOR LOCAL 
EXIT EVALUATION

In this section, we describe the design of the local exit frame-
work and then explain the model training and model inference 

procedures. Figure 1 shows the standard CNN model archi-
tecture without local exit, which is traditionally deployed at 
the central cloud. After the input layer, samples are processed 
through the convolutional blocks for feature extraction. Each 
convolutional block includes two repetitions of the follow-
ing: convolutional layer + normalization layer + activation 
layer. In the activation layer, we use the ReLU function. 
Finally, the extracted features are processed through the fully 
connected block consisting of an average pooling layer and 
a fully connected layer to compute the probability vector for 
target classes. The class with the highest probability is de-
cided as the final inference result, herein referred to as cloud 
exit because the result is the outcome of the last NN layer.

3.1  |  Design of local exit 
evaluation framework

Figure 2 shows the architecture of SEMs where the local exit 
framework is applied to the standard CNN model. We gener-
ated eight models, SEM-1 to SEM-8, with each model having 
its own exit point at a different location. To inference at the 
exit point, we locally added the fully connected block after 
the previous convolutional block. Aside from the location of 

F I G U R E  1   Standard CNN model: After the input layer, samples 
are processed through the convolutional blocks for feature extraction. 
The size of the feature maps is decreased through normalization 
and average pooling operations. Finally, the extracted features are 
processed through the fully connected layer to compute the probability 
vector for target classes
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the local exit point, other configurations such as model size 
and the location of the cloud exit were the same.

Figure 3 shows the MEM with eight local exit points and 
one cloud exit point. In the MEM, the location of each local 
exit point corresponds to that of one of the SEMs. For exam-
ple, the location of exit point 1 in the MEM is the same as the 
location of the exit point in SEM-1. Notably, the MEM has the 
distinction that it can dynamically select the optimal exit point 
from among various exit points without requiring modifica-
tions. The optimal exit point depends on the environment, such 
as the current status of computing resources, service require-
ments, or network bandwidth between the cloud and edge.

3.2  |  Model training of distributed DNN

We trained each model on a single powerful server. In the 
training phase, all samples were classified at each exit point, 
but were also forwarded to the next layer without locally exit-
ing. Then, the losses from all the local exits and the cloud exit 
were combined during backpropagation so that the entire net-
work could be jointly trained. We used the stochastic gradi-
ent descent algorithm as the optimizer and the cross-entropy 
loss function for exit point losses. In this study, we allocated 
equal weights to the losses from each exit point. Other train-
ing parameters are shown in Table 1. We used the CIFAR10 
dataset for model training and performance evaluation.

3.3  |  Model inference of distributed DNN

In this section, we describe the model inference procedure. 
First, input images are processed through several convo-
lutional blocks until the exit point for feature extraction. 
Subsequently, the probability vector for target classes is 
computed via the local fully connected block. Based on the 
probability vector at the exit point, normalized entropy is 
computed as a measure of confidence in the prediction. We 
followed the description of normalized entropy from [14].

where L is the set of all possible labels and p is a probability 
vector. Entropy ε has values between zero and one. For exam-
ple, ε close to zero means that it is confident about the inference 
of the sample, whereas ε close to one means it is not confident.

The computed entropy is compared against the exit thresh-
old (T) to determine whether the sample should be exited at 
that exit point or not. If the entropy is smaller than the exit 
threshold (ie, ε < T), the inference result is reliable, and thus, 
the sample is classified (local exit). Conversely, if the entropy 

is larger than the exit threshold (ie, ε > T), the result of the 
intermediate computation output from the previous convolu-
tional block is sent to the next convolutional block for further 
processing. Then, the model performs the final inference at 
the last NN layer (cloud exit). For exit procedures such as 
local exit or cloud exit, the class with the highest probabil-
ity is determined to be the prediction result. Note that at the 
inference phase in the MEM, only one of eight exit points 
was set up to execute local exit in order to compare its perfor-
mance under the same condition as that of the SEMs.

4  |   PERFORMANCE EVALUATION

4.1  |  Test environment setup

Figure  4 shows the test environment topology based on a 
Docker container consisting of three nodes: a cloud node, an 
edge node, and a test node. In performance testing, the test 
node sends image samples to the edge node with batch size 
32. The edge node then proceeds with computation to the 
exit point to determine whether the sample can exit locally. 
If at a local exit point a sample is deemed confident based 
on the entropy of the computed probability vector for target 
classes, then it is locally classified, and the edge node sends 
the input image's predicted class to the test node. Otherwise, 
the edge node forwards the intermediate computation to the 
cloud node for further processing. Then, the cloud node ex-
ecutes the remaining layers and sends the predicted class of 
the input image to the test node. Finally, the test node ob-
tains the classification results from the edge node and cloud 
node to calculate inference accuracy and latency.

To train our models, we utilized a separate training server 
with a Nvidia GeForce 1080Ti and graphic driver v390.116. 
Further, we carried out all performance tests by varying the 
exit threshold (ie, 0.1, 0.3, 0.5, and 0.8). Note that the oppor-
tunity for local exit depends on the value of the exit thresh-
old. Although each model's performance changed with the 
exit threshold, we confirmed a similar performance tendency 
associated with the exit threshold among the models. In 
this study, we demonstrate the performance evaluation with 
a fixed exit threshold (T = 0.3). The best value for the exit 
threshold depends on the NN architecture or dataset; how-
ever, determination of this best value is beyond the scope of 
this study.

The different accuracy and latency measures associated 
with the performance evaluation for the local and cloud exits 
are defined as follows:

•	 Edge accuracy is the accuracy of the samples that exit at 
local exit points.

•	 Cloud accuracy is the accuracy of the samples that exit at 
the cloud node.

(1)� (p)=−

|L|∑

i= 1

pilogpi

log |L|
,
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•	 Overall accuracy is the average accuracy of all the test 
samples. It is calculated as (sum of the corrected samples)/
(total number of samples).

•	 Edge latency is the average inference latency of the sam-
ples that exit at local exit points. It includes the time for the 
procedure 1) → 2) → 3-1) in Figure 4.

•	 Cloud latency is the average inference latency of the sam-
ples that exit at the cloud node; in other words, those that 
do not exit locally. It includes the time for the procedure 1) 
→ 2) → 3-2) → 4)→ 5) in Figure 4.

•	 Overall latency is the average inference latency of all the test 
samples. It is calculated as the time duration from sending the 
first image until receiving the predicted class of the last image.

4.2  |  Performance of SEMs

In this section, we analyze the inference performance of 
each SEM, such as the number of samples exited locally, 
the inference accuracy, and the inference latency. As shown 
in Figure 5A, models with exit points in the rear exited lo-
cally more frequently. In particular, for SEM-3, the number 
of samples that exited locally (5383 samples) exceeded the 
number of cloud-exited samples (4617 samples). This signi-
fies that models with exit points in the rear exhibit more con-
fident classification results. This is reasonable because such 
models perform further computation through more NN layers 
until their local exit point.

F I G U R E  2   Eight CNN models with single exit points. Each model has its exit point at a different location from that of the others: (A) SEM-1, 
(B) SEM-2, (C) SEM-3, (D) SEM-4, (E) SEM-5, (F) SEM-6, (G) SEM-7, and (H) SEM-8
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Figure 5B shows the accuracy performance of each model. 
For the abovementioned reason, models with exit points in 
the rear show higher edge accuracy (eg, 87.20% in SEM-1 
as compared with 95.24% in SEM-8). However, they tend to 
perform worse in terms of cloud accuracy because some test 
samples are difficult to classify accurately even with extensive 
computation. Thus, these samples are not exited locally and 
are forwarded to the cloud node. For example, in SEM-8, a 
few samples (861 samples) are not exited locally even though 
they are processed through most of the NN layers. Thus, these 
samples are unlikely to be correctly classified through just one 
more convolutional block, leading to a low cloud accuracy 
(58.07%). In contrast, in models with local exit points in the 
front, such as SEM-1 and SEM-2, samples that are not exited 
locally have a high probability of being correctly classified 
through sufficient computation in the cloud node. Notably, 
these samples lead to a higher cloud accuracy (88.51% and 
86.13%, respectively) than that of SEM-8. However, this en-
tails additional communication latency and computational 
latency in the cloud node as well as additional energy con-
sumption of the edge node to enable further processing in the 
cloud node. This signifies that in the case of difficult samples, 
resources such as computing, networking, storage, and energy 
are wasted when processing is further performed in the cloud 
node. Thus, we need a specific mechanism to handle them (eg, 
to drop a sample if the entropy is over the drop threshold) in 
order to efficiently use the resources for other easier samples 
and provide low-latency service.

Overall accuracy is the measure of how well the model is 
jointly optimized for local exit and cloud exit losses during 
model training. As shown in Figure  5B, models with exit 
points in the rear tended to show higher overall accuracy. 
For example, SEM-3 showed the worst overall accuracy 
(86.04%) whereas SEM-8 showed the best overall accuracy 
(92.04%).

Figure 5C shows the inference latency performance of each 
model. SEM-1 showed the shortest edge latency because it has 
the smallest number of computational layers until its exit point. 
Nevertheless, as shown in Figure 5A, it also has the smallest 

F I G U R E  3   MEM with eight exit points. The locations of the exit 
points correspond to those of the SEMs
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number of samples exited locally, as most of the samples are 
exited on the cloud node. Consequently, SEM-1 exhibits the 
longest overall inference time (gray bar). In respect of cloud 
latency, all models showed similar performance as they have 
the same NN layer depth until the cloud exit point. Although 
SEM-5 showed the shortest overall latency (3.795 ms) among 
SEMs, this does not mean that it guarantees the best latency in 
a different NN model or dataset. Furthermore, overall latency 
performance would be affected by a dynamically changing net-
work bandwidth between the edge node and cloud node, lead-
ing to a change in the optimal exit point.

4.3  |  Performance of MEM

In this section, we evaluate the inference performance of the 
MEM with eight local exit points. As mentioned in Section 
3.2, during the model training, all samples are classified at 
each exit point but are also forwarded to the next layer with-
out locally exiting. Then, the losses from the eight local exits 
and the cloud exit are combined during backpropagation so 
that the entire network is jointly trained. For model inference, 
one of the eight exit points is set up to perform the local exit.

Figure 6 shows the inference performance of the MEM 
when varying the location of the exit point. Generally, the 
MEM shows similar performance tendencies as those of the 
SEMs. However, it has a smaller number of locally exited 
samples and a lower inference accuracy compared with the 
SEM at the corresponding exit point. In overall accuracy, it 
notably showed the worst performance (84.31%) at exit point 
2 and the best performance (86.10%) at exit point 8. This 
signifies that the existence of needlessly many local exit 
points impairs the optimality of the entire NN during model 
training.

Figure 6C shows the inference latency of the MEM when 
the location of the activated exit point is varied. The MEM 
shows the shortest overall latency (4.82 ms) at exit point 3, 
whereas it shows an overall latency of 4.886 ms at exit point 
5. Note that exit point 5 is the same point at which the SEM 

F I G U R E  5   Inference performance of SEMs: (A) Number of 
samples exited locally, (B) inference accuracy, and (C) inference 
latency
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F I G U R E  6   Inference performance of the MEM: (A) Number 
of samples exited locally, (B) inference accuracy, and (C) inference 
latency
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exhibited the shortest overall latency of 3.795 ms (in SEM-
5). As expected, the reason why the MEM showed longer 
overall latency than the SEM at the corresponding exit point 
is that the MEM has a smaller number of samples exited lo-
cally than the SEM, as shown in Figure 6A.

From the performance results, we verified that the exces-
sive number of local exit points in the DNN model leads to 
performance degradation such as low inference accuracy and 
slow inference time. The overall accuracy becomes particu-
larly worse (from 92.04% to 86.10%) at exit point 8. This re-
sult is owing to the fact that for training the MEM, the losses 
from the eight local exits and the cloud exit are combined 
during backpropagation so that the entire network is jointly 
trained. That is, model weights are updated for the optimiza-
tion of all exit points, not for a specific exit point. In contrast, 
model weights are updated for the optimization of only one 
exit point and the cloud exit during the training of the SEM. 
Therefore, SEM exhibits a higher inference accuracy at a 
specific exit point than that exhibited by MEM after model 
training.

4.4  |  Performance comparison for different 
exit thresholds

In this section, we present the analysis of the inference per-
formance of each model for different exit thresholds such as 
T = 0.1, 0.3, and 0.5. Figure 7 shows the performance results 
of the SEMs. As shown in Figure  7A, samples have an in-
creased possibility of being locally exited under a higher exit 
threshold (T = 0.5), whereas fewer samples are locally exited 
under a lower exit threshold (T = 0.1). Figure 7B shows the 
inference accuracy with respect to different exit thresholds. All 
the accuracy metrics, including edge accuracy, cloud accuracy, 
and overall accuracy, increase as the exit threshold decreases. 
Notably, the edge accuracy and overall accuracy show the 
largest performance gap in SEM-1. These results are reason-
able because a low exit threshold requires more confidence 
regarding the prediction to exit samples locally. That is, only 
samples with extremely high confidence are locally exited 
under a lower exit threshold (T = 0.1), and most of the samples 
are sent to the cloud for further processing. In contrast, some 
samples with uncertainty are locally exited under a higher exit 
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threshold (T = 0.5), leading to low accuracy. Additionally, as 
shown in Figure  7C, the overall inference latency increases 
as the exit threshold decreases. Furthermore, we verified that 
the MEM also shows similar performance results as the exit 
threshold is varied, as shown in Figure 8.

4.5  |  Comparison of training accuracy

In this section, we compare the training accuracy of the SEMs 
and MEM. Note that in the training phase, all samples are clas-
sified at each exit point, but are also forwarded to the next layer 
without locally exiting. Figure  9 shows the accuracy of the 
SEMs and MEM at each exit point as the number of training 

epochs increase. In general, the accuracy of the SEM (solid line) 
is higher than that of the MEM (dotted line) in a correspond-
ing exit point location. At the end of training, the SEM with an 
earlier exit point even outperformed the MEM with a later exit 
point (eg, SEM-3 outperforms the MEM with exit point 4).

Figure 10 shows the edge accuracy and cloud accuracy at 
the end of the training phase. The lines signify cloud accuracy, 
whereas the bars signify edge accuracy. Note that the cloud 
accuracy of the MEM is fixed at 88.58%. In both accuracy 
metrics, the SEM outperformed the MEM at the correspond-
ing exit points. In particular, the edge accuracy showed the 
largest performance gap at exit point 2 (SEM-2); for example, 
72.65% in SEM-2 and 64.59% in the MEM. Additionally, as 
mentioned above, the edge accuracy of SEM-3 (77.76%) was 

F I G U R E  9   Accuracy comparison at each exit point of the SEMs and MEM over training epochs
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higher than the edge accuracy of the MEM with exit point 4 
(76.06%). Notably, this performance gap increased as the exit 
points moved toward the rear. Furthermore, we verified that the 
edge accuracy of the SEM after exit point 6 surpassed even the 
cloud accuracy of the MEM. For example, the edge accuracy of 
SEM-6 was 88.92%, whereas the cloud accuracy of the MEM 
was 88.58%. These results indicate higher accuracy can be 
achieved with less computation if we adopt a DNN model with 
single exit points rather than too many exit points. Furthermore, 
after SEM-7, edge accuracy was even closer to the cloud ac-
curacy in the same model. Therefore, further processing is not 
required in the cloud node. For example, the edge accuracy and 
cloud accuracy of SEM-7 were 90.98% and 92.10%, respec-
tively. As mentioned in Section 4.2, this result supports the need 
of a specific mechanism to handle difficult samples.

5  |   CONCLUSIONS

In this study, we analyzed the effect of local exit on the in-
ference performance of DNN models in an edge computing 
environment. We designed several DNN models by varying 
the location and number of exit points for performance evalu-
ation. The performance test results demonstrate that a higher 
accuracy is achieved with less computation if we adopt a DNN 
model with a single exit point rather than one with an excessive 
number of exit points. Consequently, with regard to providing 
an inference service with low latency and high accuracy based 
on a DNN model in an edge computing infrastructure, adopt-
ing a model with one or only a few exit points is more effi-
cient. Moreover, the performance results indicate the need for 
a specific mechanism to handle difficult samples to efficiently 
use the resources to infer other, easier samples and provide a 
low-latency service. In this study, we allocated equal weights 
for the loss from each exit point during model training. In the 
future, we will conduct performance evaluation by assigning 
different weights for the losses. Furthermore, we will evaluate 
performance under a practical environment wherein the edge 
nodes have restricted computing resources.
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