• Title/Summary/Keyword: Neumann problems

Search Result 53, Processing Time 0.024 seconds

THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION

  • Yun, Ki-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.427-436
    • /
    • 2001
  • It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.

  • PDF

Design and Implementation of a Massively Parallel Multithreaded Architecture: DAVRID

  • Sangho Ha;Kim, Junghwan;Park, Eunha;Yoonhee Hah;Sangyong Han;Daejoon Hwang;Kim, Heunghwan;Seungho Cho
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.15-26
    • /
    • 1996
  • MPAs(Massively Parallel Architectures) should address two fundamental issues for scalability: synchronization and communication latency. Dataflow architecture faces problems of excessive synchronization overhead and inefficient execution of sequential programs while they offer the ability to exploit massive parallelism inherent in programs. In contrast, MPAs based on von Neumann computational model may suffer from inefficient synchronization mechanism and communication latency. DAVRID (DAtaflow/Von Neumann RISC hybrID) is a massively parallel multithreaded architecture which takes advantages of von Neumann and dataflow models. It has good single thread performance as well as tolerates synchronization and communication latency. In this paper, we describe the DAVRID architecture in detail and evaluate its performance through simulation runs over several benchmarks.

  • PDF

FEYNMAN-KAC SEMIGROUPS, MARTINGALES AND WAVE OPERATORS

  • Van Casteren, Jan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.227-274
    • /
    • 2001
  • In this paper we intended to discuss the following topics: (1) Notation, generalities, Markov processes. The close relationship between (generators of) Markov processes and the martingale problem is exhibited. A link between the Korovkin property and generators of Feller semigroups is established. (2) Feynman-Kac semigroups: 0-order regular perturbations, pinned Markov measures. A basic representation via distributions of Markov processes is depicted. (3) Dirichlet semigroups: 0-order singular perturbations, harmonic functions, multiplicative functionals. Here a representation theorem of solutions to the heat equation is depicted in terms of the distributions of the underlying Markov process and a suitable stopping time. (4) Sets of finite capacity, wave operators, and related results. In this section a number of results are presented concerning the completeness of scattering systems (and its spectral consequences). (5) Some (abstract) problems related to Neumann semigroups: 1st order perturbations. In this section some rather abstract problems are presented, which lie on the borderline between first order perturbations together with their boundary limits (Neumann type boundary conditions and) and reflected Markov processes.

  • PDF

ANALYSIS OF SOME NONLOCAL BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FEEDBACK CONTROL

  • Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.325-338
    • /
    • 1998
  • Some nonlocal boundary value problems which arise from a feedback control problem are considered. We give a precise statement of the mathematical problems and then prove the existence and uniqueness of the solutions. We consider the Dirichlet type boundary value problem and the Neumann type boundary value problem with nonlinear boundary conditions. We also provide a regularity results for the solutions.

  • PDF

Fixed Point Theorems for Mixed Monotone Vector Operators with Application to Systems of Nonlinear Boundary Value Problems

  • Sadrati, Abdellatif;Aouragh, My Driss
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.613-629
    • /
    • 2021
  • In this paper, we present and prove new existence and uniqueness fixed point theorems for vector operators having a mixed monotone property in partially ordered product Banach spaces. Our results extend and improve existing works on τ-φ-concave operators in the scalar case. As an application, we study the existence and uniqueness of positive solutions for systems of nonlinear Neumann boundary value problems.

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

MULTI-LEVEL ADAPTIVE SOLUTIONS TO INITIAL-VALUE PROBLEMS

  • Shamardan, A.B.;Essa, Y.M. Abo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.215-222
    • /
    • 2000
  • A multigrid algorithm is developed for solving the one- dimensional initial boundary value problem. The numerical solutions of linear and nonlinear Burgers; equation for various initial conditions are studied. The stability conditions are derived by Von -Neumann analysis . Numerical results are presented.