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Abstract

MPAs(Massively Parallel Architectures) should address two fundamental issues for scalability: synchronization and
communication latency. Dataflow architecture faces problems of excessive synchronization overhead and inefficient execution
of sequential programs while they offer the ability to exploit massive parallelism inherent in programs. In contrast, MPAs based
on von Neumann computational model may suffer from inefficient synchronization mechanism and communication latency.
DAVRID(DAtaflow/Von Neumann RISC hybrID) is a massively parallel multithreaded architecture which takes advantages of
von Neumann and dataflow models. It has good single thread performance as well as tolerates synchronization and
communication latency. In this paper, we describe the DAVRID architecture in detail and evaluate its performance through

simulation runs over several benchmarks.

1. Introduction

Some of the problems which have bothered dataflow
machine developers are that a dataflow machine not only
needs specialized hardware but also is unfamiliar to common
people. In addition, dataflow architectures cause problems of
excessive synchronization costs and inefficient execution of
sequential programs[l]. To make dataflow machines
practical we cannot help combining dataflow computing rule
with conventional, von Neumann style, which offers the
ability to exploit locality through registers and caches.
Several MPAs consisting of a number of high performance
microprocessors are recently being developed with various
topologies of interconnection network. We “believe that a
multithreaded architecture elaborately built from conventional
high performance microprocessors will give us good single-
and multi-thread performance through incorporating program-
counter based instruction sequencing into dataflow computer
architecture.
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The DAVRID[18], which has been operational with two
nodes since June 1993, consists of three functional units:
TPU(Thread Processing Unit), SU(Synchronization Unit), and
NIMU(Node Interface and Management Unit). Each unit is a
program execution unit consisting of a conventional micro-
processor, but only the TPU executes the user programs: the
TPU performs only pure computational jobs, and the other
units help the work of TPU. The SU takes roles of
synchronizations, frame allocation/deallocation, etc. and the
NIMU takes roles of message routing, global memory
handling, and load balancing. In the future, DAVRID will be
extended to a collection of clusters each of which consists of
up to 4 nodes; the NIMU interfaces among nodes within a
cluster.

Token matching problem has been -controversial in
developing dataflow machines. Now, dataflow researchers do
not consider associative waiting-matching store or hardware
hashing any more. It has been replaced by explicitly
addressed token store since Monsoon{2]. Monsoon uses
circular pipeline and allows only short instruction threads
using a small set of registers. However, there are pipeline
"bubbles” in case of dyadic instructions and the use of
registers is very restricted. P-RISC architecture([3] splits the
“complex” dataflow instructions into separate synchroni-
zation, arithmetic and fork/control instructions. These von
Neumann style instructions get together and form longer
threads, and some dataflow synchronizations are replaced
with conventional program-counter based synchronization,
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However, it is only a conceptual architecture. ETL’s EM-4[4
] uses direct matching scheme, roughly identical to
frame-based synchronization, and very short, restricted
threads called strongly connected blocks, which provide the
ability to reduce matching frequencies and permit the use of
a register file.

TAM(5] is the execution model to implement synchroni-
zation, scheduling, and storage management under compiler
control. Iannucci’s Dataflow/von Neumann Hybrid architec-
ture[6] had incorporated dataflow ideas into von Neumann,
which affected the computational model of DAVRID. MIT’s
*T[7] is known to show good single thread performance
with a conventional microprocessor. It’s a multithreaded
architecture with advantages in hiding remote memory
latency and efficient synchronization. However, even if it
uses a separate coprocessor for message handling, remote
memory requests can cause conflicts since global and local
data are stored in the unified node memory. In TAM and
P-RISC[8], a processor handles messages as well as
performs pure computation. Further, there is considerable
scheduling overhead in TAM[8]. The DAVRID architecture
is mainly inspired by *T.. However, we mitigated
considerably the computation processor’s burden through
separation of synchronization and global memory handling.
DAVRID has a special synchronization unit called SU, which
also takes a role of frame allocation/deallocation. Global
memory of DAVRID, called SM(Structured Memory), is not
located at any node, instead it is located at each cluster,
which is suitable for exploiting locality and reducing the
burden of the nodes..

In section 2 we describe the computational model on
which our multithreaded -architecture is based. In section 3
we introduce DAVRID and describe each functional unit of
it in detail. In section 4 we describe how programs are
executed on DAVRID. In section 5 we evaluate DAVRID
through simulation results over several benchmarks which
include scalability, utilization, and data distribution. Finally,
in section 6 we remark conclusion and future works.

I1. Computational Model

In general, parallel architectures based on von Neumann
computational model are known to have performance
degradation due to excessive overheads resulted from latency
and synchronization costs which increase with the number of
processors[9]. In contrast, von Neumann computational
model provides efficient execution for sequential and state
dependent programs, easy resource management, and
portability of enormous extant software[1]. In this paper, we
suggest a multithreaded model which is a hybrid of von
Neumann model and dataflow model. In the multithreaded
model, two fundamental problems[9] of parallel processing

environment can be tackled by dataflow computing rule
while still preserving the advantages of von Neumann model.

In the multithreaded model, the computation unit is a
thread which consists of logically related sequential
instructions which never wait for any event. We can easily
solve the problems of excessive synchronization overhead

and inefficiency of sequential programs in dataflow model,

permitting the synchronization only between' threads. A
thread is sequentially executed, exploiting locality through
the use of registers and caches, but no explicit
synchronization is required. In addition, we can tolerate long
latencies by applying dataflow computing rule to inter-thread
execution. Note that threads must be formed by a compiler
so that any long latency operation should be executed
through split-phase. From these points *of view, the
multithreaded model is based on the hybrid model which
combines advantages of von Neumann model and dataflow
model.

In DAVRID, a thread can be scheduled to a processor,
TPU, only when all values and signals for the thread are
satisfied. Once a thread is scheduled to a processor, the
thread is nonpreemptively executed while accessing memory
and registers. During execution, the thread may generate
messages to remote memory or other threads, if necessary.
The processor switches its control to another thread as soon
as the thread completes. Since it is not required to save
processor status upon switching threads, there is little context
switching overhead.
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Each thread in DAVRID is identified by a “continuation”,
<fp, ip> where fp, a frame pointer, is the base address of the
frame which is the local data area for a function, and ip, an
instruction pointer, is the starting address of the thread which
is going to execute a part of that function(see Figure 1). To
indicate how many events remain to be required for the
execution of the thread, we introduced a synchronization
counter. An event means the arrival of a value or a signal.
Note that a frame is allocated for each activated function or
loop. During execution of functions or loops, processors
read/write values fromfinto the frame. In a frame, a
synchronization counter and the related thread code
pointer(ip) are relatively addressed by offset, and a value slot
is relatively addressed by displacement as seen in Figure 2.
The synchronization counter is initially the number of events
needed for the activation of the thread. When an event
occurs, the synchronization counter is decreased by 1, and a
value, if exists, is stored at the value slot. If the
synchronization counter becomes 0, the corresponding thread
is activated.
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Fig. 3. DAVRID Architecture.

III. DAVRID

DAVRID consists of a collection of clusters, which
communicate with each other through a pipelined, message
based interconnection network(see Figure 3). Each cluster has
nodes up to four and node-to-node communication is done
via NIMU(Node Interface and Management Unit).

Each node has its own local memory and may work
independently. Local memory is used for frame area, and
each frame can be directly handled by its owner node, i.c.,

the processor in a node can directly load and store data in
its own frame. We refer to the local memory as FM(Frame
Memory). If the TPU wants to store some data into a frame
which is allocated in another node, it should send a message
to the node. At that time, of course, global address should be
formed by concatenating the node id.

Global data are stored in the memory which is inside
NIMU. It must be handled by means of messages and the
processor in a node can not directly load or store data from
or in it, i.e., global data are always "remote”. We refer to the
global memory as SM(Structured Memory), since it is mostly
used for global data structures like I-structure[10]. The SM
is managed by a NIMU and.placed in a cluster, not a node.
Similar to FM, we can get the global address of SM by
concatenation of cluster id. We can tell whether a message
is for SM or FM by its header.

1. Node Architecture

A node consists of TPU(Thread Processing Unit),
SU(Synchronization Unit), FM(Frame Memory), and message
queues(see Figure 4). The TPU is a core unit to execute
threads. It consists of a conventional RISC processor and
TM(Thread Memory) which contains program codes. The SU
is a wunit for synchronization. It also consists of a
conventional RISC microprocessor and its local memory
containing a message handler. These two units communicate
using ATQ(Active Thread Queue) and STQ(Setup Token
Queue), and share the FM.

Fig. 4. Organization of the DAVRID Node.

Thread Processing Unit

This unit executes threads in a sequential manner using a
conventional RISC processor. It is supplied with the
continuation of next thread from the ATQ. Note that it is
“multithreading” in the system’s view, but it’s just a
sequence of conventional instructions in the processor’s view.

We benefit from using an existing conventional RISC
processor in a few points. Existing sequential programs can
be used without any modification since there is no
inter-thread synchronization and the SU is thoroughly
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transparent to those programs. The other merit is that we can
exploit the locality among instructions using general-purpose
registers and the program-counter based synchronization. The
TPU can execute single threaded programs efficiently as well
as multithreaded programs.

Thread Switching: Compared with single threaded
(sequential) programs, the thread switching may be overhead.

To get the performance gain from multithreading, the

switching time should be sufficiently smaller than the remote
memory latency. While the thread switching occurs implicitly
on cache miss in some multihreaded architectures like
Alewife[11], the thread switching occurs explicitly in
DAVRID. There is no notion of the thread “suspension” but

“termination” in our model. When the processor of the TPU °

meets NEXT instruction,-it terminates-the current thread and
begins a new thread. Thus, there is no need to save the
processor status. The TPU just fetches two words - fp and ip
- from the ATQ. The register containing fp is used as the
base register at the memory address calculation. ip is used
for branching to the starting point of the new thread. Since
NEXT is not a conventional instruction, we should
implement by a few instructions which perform the above
operations.

Message Forming: There are many cases of generating the
messages: synchronizations, global memory accesses, etc. A
message is generated by, logically, a special instruction that
is composed of conventional RISC instructions. These
instructions generate the message and insert it into
ETQ(External Token Queue). The message forming overhead
may be mitigated by a hardware facility like a message
formatter, but we didn’t consider the message formatter in
our first prototype. _

As we described above, some special instructions are
required to form messages and switch the threads, e.g.,
NEXT instruction. In other words, our abstract machine
needs its own instruction set to emulate long latency
operations, explicit/implicit synchronizations, and other
multithreaded features. We refer to the instruction set as
DAVRID PML(Parallel Machine Language). The PML
defines basic operations of DAVRID, which includes
synchronization of threads, global memory access, dynamic
memory management, and conventional load/store,
arithmetic/logic, and branch(see Appendix). Conventional
instructions are defined as MIPS R3000 ISA[12] since our
implementation is based on MIPS R3000 family.

As already explained, a PML instruction corresponds to a
collection of R3000 instructions. Most PML instructions

generate a message containing a “request”. In that case, SU

or NIMU may serve the request. o

The TPU itself can serve directly requests local to its own
frame memory without generating messages. ~ Such
instructions are as STARTI and STARTIn. These instructions
can locally activate a thread: when synchronization is

completed, a continuation is produced. In that case,
STQ(Setup Token Queue) is used for passing the
continuation to the SU. Note that the TPU can’t immediately
execute that thread since current thread does not complete
yet. So, the TPU just passes the continuation to the SU
through the STQ and then the SU moves it to the ATQ
again.

Synchronization Unit

This unit fetches messages from the ITQ(Internal Token
Queue) and performs operations indicated by them. There is
a message handler having a collection of routines to handle
each kind of messages. The message handler is similar to
“entry” of P-RISC[8], “inlet” of TAMI[5], and

.synchronization-purpose thread of *T[7], but those codes are

generated by a compiler according to applications. Our
message handler is independent of application programs,
which means that it is set up at systemn development time. In

addition it’s’ not limited to dealing with data or

synchronizations. Many kinds of messages which perform
various functions are elaborately designed. These messages
can be roughly categorized into synchronization and frame
allocation/deallocation.

Synchronization: 1t is an intrinsic function of the SU. Data
needed to execute a thread are stored into the FM by the SU.
If all the data are stored, the SU enables the corresponding '
thread, i.e., inserts fp and ip into ATQ. Data received by the
SU are the responses of the SM access or data(or signals)
sent by another thread. Though there are many kinds of
messages related to synchronization, we describe START
message as a typical example. When the message handler
meets a START message, it performs the following
operations:

message: START fp, offset, disp, value
operations: FM[fp+disp] <-- value
if synchronization counter in FM[fp+offset] = 1
then ATQ <-- fp
ATQ <-- ip in FM[fp+offset]
else
decrease synchronization counter in FM [fp+offser]

START is a message for getting thread synchronized by
sending a value to another thread. Such a message can be
generated by the TPU, the NIMU, or the SU as a response
of the request message.

Frame Allocation/Deallocation: When the SU receives a
message requesting frame allocation or deallocation, it
allocates/deallocates the frame by the requested size and
sends a response message to the source node. There are
various kinds of messages in allocating/deallocating frames.
The frame allocation/deallocation job belongs to a run-time
system, which is executed in the SU and the NIMU.
Compared with other run-time systems in which the frame
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allocation/deallocation is performed within a processor like
TPU, this approach has some advantages: workloads of TPU
are distributed, ie., TPU is free from memory
allocation/deallocation and scheduling, and performs only
pure computational jobs.

2. The Node Interface and Management Unit

NIMU also handles messages as SU does, but their
functions are different in that the NIMU works as a message
router and an SM manager, and balances workloads.

Message Routing: If a received message is destined for a
node in the same cluster, the NIMU directly inserts it into
ITQ(Internal Token Queue) of the destination .node.
Otherwise, the NIMU sends the message to the destination
node through the interconnection network.

Structured Memory Handling: Another important function
of the NIMU is global memory management. In case the
message has the address of a cluster instead of a node, it
means that the message requests access to SM. In case of
normal memory access, the NIMU simply performs normal
memory operation with the address extracted from the
message. But, I-structure operations need synchronization.

Load Balancing: A message which requests frame
allocation is not destined for a specific node. The NIMU
chooses a node at which the requested frame will be
allocated, and routes the message to that node. Then, the SU
of that node allocates the frame and sends the response to the
source node. Assuming that total allocated frame size is
proportional to workload of the node, the NIMU distributes
frame allocations among nodes or clusters. The NIMU
maintains a table to keep track of the quantity of allocated
frames at each node within the cluster.

3. Message Packets

Messages moving around the DAVRID are generated by
not only the TPU, but also the SU and the NIMU. A
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NODE: Node Identifier (12 bits) S: Size (4 bits)
FBA: Frame Base Address (20 bits) OFFSET: Offset (10 bits)
MT: Message Type (8 bits) DISP: Displacement (10 bits)

Fig. 5. General Message Packet Structure.

message generated by the TPU contains “request” to the SU
or the NIMU, and the SU or the NIMU generate a
"response” message which is destined for the SU of the
original node. The request messages are roughly categorized
into synchronization, frame allocation/deallocation, and SM
access. The “response” message can’t be distinguished from
the “request” message by their forms. All messages used in
DAVRID have the general form described in Figure 5.

For instance, START message has the packet structure as
Figure 6. The bit pattern meaning START message is
assigned to the MT field. There are other similar messages:
STARTr, STARTn, STARTN, and STARTc.

0 11 31 39 43 63

[NODEI FBA IMT'S‘OFFIDISP|

| value or others l value of others |

Fig. 6. Message Packet Structure of START.

Note that the above messages are always destined for
nodes, so the first field of each message is node id. The
message requesting SM access is not destined for any node
but a cluster. Thus, the first field of such a message is
always cluster id. Figure 7 illustrates the packet structure of
ILOAD as an example. The third word - NODE and FBA -
indicates the source node context.

0 9 11 31 39 43 53 63

|CLUSTER‘ SM_ADDR ] MT I S ’ OFF ‘ DISp ’

| NODE [ FBA ’

Fig. 7. Message Packet Structure of ILOAD.

4. Implementation

Our implementation is focused on developing the
prototype using only conventional microprocessors. We
believe that this contributes to showing that multithreaded
model based on dataflow computing can be directly realized
without specialized hardware.

Each unit of DAVRID consists of a commercial RISC
microprocessor and local memory. TPU was implemented
using a MIPS R3001 processor. We refer to the local
memory of TPU as TM into which multithreaded programs
are loaded. SU was implemented using a MIPS R3051
processor. Additionally it has EPROM containing a message
handler. The physical implementation of NIMU is similar to
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SU. NIMU also has a MIPS R3051 and EPROM containing
a message handler, but this message handler differs from that
of SU. Local memory of NIMU is used for global data, and
we refer to it as SM.

FM and message queues(ATQ, STQ, ITQ, and ETQ)
which interface each unit are incorporated into a module
referred to as UIM(Unit Interface Module)(see Figure 8). We
used commercial FIFO chips as message queues each of
which has dual ports and ensures asynchronous simultaneous
accesses. Each message queue is “memory-mapped”. Thus,
each unit can deletefinsert an item to the interfaced message
queue by a load/store operation with specific address. The
FM is implemented by commercial dual-port SRAMs, which
ensures fast asynchronous simultaneous accesses by both
TPU and SU.

NIMU
. U
ATQ STQ 1TQ ETQ
<:>: [Ea[E] :<:>

Frame Memory

Fig. 8. Unit Interface Module.

DAVRID prototype was implemented as 2-node system
which has one NIMU and two nodes. We are considering
various topologies - as cluster-to-cluster interconnection
network but didn’t designed one yet.

ETL’s EM-4 consists of a collection of specially designed
single chips called EMC-R[4]. This is completely orthogonal
to our approach. EMC-R consists of Switching Unit, Input
Buffer Unit, Fetch and Matching Unit, Execution unit, and
Memory Control Unit. Switching Unit, Fetch and Matching
Unit, and Execution Unit are roughly similar to NIMU, SU,
and TPU of DAVRID respectively. But there is a
fundamental difference: units of EMC-R are pipelined and
their operations can be overlapped, but not asynchronousty
concurrent. And each unit of DAVRID can perform more
complex and various functions than those of EMC-R. All
units of DAVRID are program execution units. In terms of
computational model, the Strongly Connected Block of EM-4
is less general than the thread of DAVRID.

MIT’s *T is very similar to our approach, but its
architecture differs from ours. sP(Synchronization Copro-
cessor) and RMem(Remote Memory Request Coprocessor) of
*T are roughly identical to SU and NIMU of DAVRID
respectively. But the functions of NIMU are not only global
memory handling but also message routing and load
balancing. And NIMU does not belong to any node but to a
cluster. SU is functionally a superset of sP of *T. The SU
performs memory management as well as synchronization.

Moreover, the message handler of SU is fixed, while sP

executes the threads generated by a compiler. sP is only

logically a separate coprocessor. The separation was

physically not pursued while the SU is a physically separate, -
distinct unit which is designed to pursue concurrency.

IV. Program Execution

We implemented Id" and Fortran for DAVRID. Id'[21]is
a functional core of 1d[14] with I-structure ‘and extended to
allow user to specify loop unfolding degree explicitly. Each
of 1d" and Fortran compilers has its own front-end but shares
a back-end. Our compiler uses dataflow program graph[15]
as an intermediate form between front-end and back-end,
which has a hierarchically structured form that facilitates
high level optimizations without consideration of details on
the architecture. Thus programs written in Id” or Fortran are
all translated into program graphs. )

The program graph is transformed into the machine graph
for DAVRID. The machine graph[19], called the DAVRID
graph, has well-defined operational semantics. So, the
DAVRID graph has the same level of abstraction as the
machine graph of the compilers for TTDA and Monsoon.
The DAVRID graph is partitioned according to its
partitioning scheme[19], which mainly makes long latency
instructions and their output instructions belong to different
partitions each other fo deal long latency instructions with as
split transactions, and performs several optimizations to
minimize communication and synchronization between
partitions. Also, loop handling[20] is specially considered
under multithreading environment. Loops can be unfolded or
sequentialized, depending on the amount of parallelism and
the amount of communication and synchronization in their
body. ' ' :

Thread codes for each partition are initially represented in
DAVRID PML, and then become input form for assembler
by translating each DAVRID PML instruction into a set of
R3000 assembly instructions: a DAVRID PML instruction
for the memory allocation/deallocation and synchronization
among threads is translated into a sequence of R3000
assembly instructions, representing a message formation
routine to make a run-time system call. Finally, the thread
codes become an executable form for DAVRID real machine
through assembler and loader.

The run-time system of DAVRID supports the execution
environment of programs and manages resources of system:
thread management, memory management, and message
management. For fast prototyping of DAVRID, we did not
much care about optimizations on run-time systems. Thus, to
make DAVRID suitable for MPP(Massively Parallel
Processing) systems, it is required to incorporate efficient
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thread scheduling, dynamic allocation/deallocation for frame
and heap, and efficient message formation in the run-time
system.

V. Evaluation

This section evaluates the performance of DAVRID by
simulation. Since real machine currently has only two nodes,
and is in the early stage of development, it is difficult to
evaluate the performance thoroughly with the real machine.
So, we developed two simulators: clock cycle level simulator
and thread level simulator. We first estimated performance
parémeters ‘exactly using the simulator with the level of clock
cycle, then reflected the results to the simulator with the
level of thread. We can evaluate our machine fast and
exactly through the above method.

We will evaluate the DAVRID in terms of scalability and
utilization. In addition, we will analyze the effects of data
distribution on the machine. Four benchmark programs are
used for our simulation: paraffins problem, matrix
multiplication, Fibonacci function, .and LLL1. Paraffins
problem[16] describes how to enumerate the distinct isomers
of paraffins of size up to n, which is 13 in our evaluation.
In matrix multiplication, matrices with dimension 20 20 are
used. Fibonacci function is a recursive function with the
argument 15. LLL1 in the Lawrence Livermore Loops[17] is
also used.

Scalability

o

|~

L Paraffine

Speedup
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o 2 4 6 B 10 12 14 16
Number of Nodes

Fig. 9. Scalability.

Figure 9 shows scalability of DAVRID up to 16 nodes.
Scalability of matrix multiplication is better than that of other
benchmarks. It can be interpreted in terms of computation
time, communication time, and properties of problems. There
exists massive parallelism in matrix multiplication and LLL1.
But the size of loop body of matrix multiplication is larger
than that of LLL1. Note that innermost loop of matrix
multiplication is sequential and the outer level loops are
unfoided. .Loop unfolding overhead for LLL1 seems to be too
large to exploit parallelism sufficiently due to small size of

computation of the loop body. In the Fibonacci function, the
function body takes only a little computation time, but a
considerable much communication and many synchronization
occurs among frames dynamically allocated. Even more, the
current runtime system considers only load balancing, not
consider the locality of computation. So, the effects of
parallel execution for functions called recursively is
overridden by its overhead. There exists much consumer and
producer parallelism in paraffins problem. So, it causes
excessive operations on SM, which usually consists of long
latency instructions. From this point of view, it is very
important to consider the locality of computation to reduce
the overhead of operations on SM.
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Utilization ]

Utilization of each functional unit(TPU, SU, and NIMU)
in DAVRID is shown in Figure 10-13. We can see that as
the number of nodes increases up to 4, utilization of TPU
decreases, and that of SU a little decreases while that of
NIMU increases. This situation is explained by the bottleneck
caused in NIMU, which is in charge of handling operations
on SM, load balancing, and message processing. In other
words, as the number of nodes increases up to 4, the number
of messages to be sent to NIMU' increases linearly, but
throughput of NIMU is constant at the bottleneck point. So,
under the bottleneck of NIMU, each SU in a cluster receives
the decreased number of messages from NIMU. Thus, since
fewer tokens are queued in ATQ of the correspoanding node,
utilization of TPU is reduced. Also, up to 16 nodes, this
situation still stay except for a little difference which can be
explained in the same way. We are trying to solve these
problems by exploiting the locality of computation embedded
in programs. For example, we could get the improved results
by more than ten times by means of careful handling of data
distribution. We will optimize the compiler and run-time
system to make the locality be exploited sufficiently.

Data distribution

We will evaluate several strategies on data distribution
under 16 nodes(4 clusters) using matrix multiplication, in
Figure 14. In the first case(’larray in a SM’), all arrays of
matrix multiplication are allocated on the NIMU of only one
of 4 clusters. So, for nodes of clusters where the arrays are
not allocated, all array operations on SM result in a
considerable communication overhead due to network
routing. Thus the loop unfolding for more than 4 nodes
makes little effect. In the second case(’Global SM’), arrays
are allocated on the centralized shared memory as Monsoon
instead of NIMU. Although this type of shared memory
doesn’t exist in DAVRID, it is specially considered to
compare the effect of data distribution. Similar to the first
case, this case shows that communication can’t be overlapped
with computation due to the considerable communication
overhead and the small size of computation of the loop body.

In the fourth case(’Distr. larray’), unlike the first case, arrays
are optimally distributed across 4 clusters; all array elements
used in the TPU are localized within the corresponding
cluster. So, communication overhead can be considerably
lessened since operations on SM don’t cause network routing
any more. With this strategy, the loop unfolding provides
linear speed-up up to 16 nodes as shown in Figure 14. In the
third case(’Local larray’), all array elements used in the. TPU
are localized within the frame memory associated with the
TPU instead of the NIMU. This strategy can be realized by
fetching a bundle of array elements by the column or the row
at a time. So, the size of threads can be enhanced since only
one long latency operation for fetching the bundle of array
elements is required. In contrast, in the fourth case, one long
latency operation is required for each array element. Thus,
the third case provides more improved pérformance than the
fourth case. From this experience, we are developing the data
distribution mechanism controlled by user and compiler.
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Fig. 14. Comparison of Data Distribution Strategies.

VI. Conclusion

Most of large scale computers inherently have very long
PrOCESSOr-processor  OF  Processor-memory — communication
latency. This problem would be solved by global coherent
caches or multithreading scheme. Both of them solve the
problem through reducing or hiding “remote load” latency.
However, global caches do not deal with "synchronizing
load” problem which is “when are data ready to load?” We
use multithreading with dataflow model to solve this
synchronization problem. Dataflow model is also
advantageous for representing parallelism and scheduling
tasks, however, pure = dataflow model needs excessive
synchronizations which is a difficulty in developing
high-speed processors. Thus, we chose hybrid model which
employs the dataflow rule only to inter-thread level. As we
just use commercial microprocessors for intra-thread
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Instruction

Semantics

_thread activation and synchronization

START fp,off,disp,val

TPU: send a START message
SU: FM([fp+disp)«val, decrease sc at FM[fp+off]

STARTTY fp,off,disp,r_off,value

TPU: send a STARTr message
SU: FM([fp+dispj«val, decrease sc at FM[fp+off],
send a signal to r_off

STARTI off,disp,val

TPU: FM[current fp+disp]«-val,
SU: decrease sc at FM[current fp+off]

STARTn fp,off

TPU: send a STARTn message, SU: decrease sc at FM[fp+off]

STARTN fp,disp,val,off

TPU: send a STARTN message
SU: FM[fp+disp]«val, decrease sc at FM[fp+off]

STARTIn off

TPU: send <fp, off> to STQ
SU: decrease [currrent fp+off]

STARTd fp,ip

TPU: activate thread <fp, ip>

STARTc¢ closure_addr

TPU: send a STARTc message
SU: traverse all closure structures for a function call

NEXT

fetch the next continuation from ATQ

ILOAD smaddr,off,disp

TPU: send an ILOAD message
NIMU: if SM[smaddr].tag is full, then send SM[smaddr].val to
off:disp, else deferred_list—ILOAD request

ISTORE smaddr,off,val

TPU: send an ISTORE message
NIMU: SM[smaddr}.val<val, send a signal to off

ISTOREr smaddr,val

TPU: send an ISTOREr message, NIMU: SM[smaddr].val«val

ARRAY_BOUND smaddr,off,disp

TPU: send an ARRAY_BOUND message
NIMU: send SM[smaddr+lb;], SM[smaddr+uby], ... to off:disp

memory management

FALLOC f size,off disp,init_cjc,return_sc,off,,
dis,,offs,disy, ...

TPU: send a FALLOC message
SU: allocate FM, send fp to off:disp

M_FALLOC fsize

NIMU: send a M_FALLOC message
SU: allocate a FM, start initialization of the main function frame

FDEALLOC fp,size

TPU: send a FDEALLOC message, SU: deallocate FM

API fsize,arg_valref_count,off,disp

TPU: send an APl message
SU: allocate a closure structure, send fp to off:disp

APn closure_addr,arg_val,ref_count,off,disp

TPU: send an APn message
SU: allocate a closure structure, send fp to off:disp

APf closure_addr,arg_val,fp_off,fp_dis,
return_sc,off,,dis,,off,,dis,, ...

TPU: send an APn message
SU: allocate a closure structure & a function frame,
send fp to fp_off:fp_disp,

GETsell_FRAME K size,off,disp,init_csc,
cleanup_cjc,rv_off1,rv_dis; rv_off,,rv_dis,, ...

TPU: send a GETsell_FRAME message
SU: allocate K loop frames

PUTsell_FRAME disp,K size

TPU: send a PUTsell_FRAME message
SU: deallocate K loop frames

GETsel2_FRAME LK size,off disp,init_csc,
cleanup_cjc,ready_sc,setup_cscy,setup_cscy,
rv_offy,rv_dis,,rv_off,,rv_dis;, ...

TPU: send an GETsel2_FRAME message
SU: allocate a sequential loop frame, send fp to off:disp

LDEALLOC fp,size

TPU: send a LDEALLOC message
SU: deallocate a sequential loop frame

GETpl1_FRAME LK size,off disp,init_csc,
cleanup_cjc

TPU: send a GETpll_FRAME message
SU: allocate a parallel loop frame, send fp to off:disp

PLDEALLOC FP, size

TPU: send a PLDEALLOC message
SU: deallocate a parallel loop frame

HALLOC off disp,type,n,lju;,lz,uz, ...

TPU: send a HALLOC message
NIMU: allocate SM, send smaddr to off:disp

HDEALLOC smaddr

TPU: send a HDEALLOC message, NIMU: deallocate SM
others .

HOST_OUT! type,val,,vals, ...

TPU: send a HOST_OUTI1 message
NIMU: send a message to the host

HOST_OUT2 types,val, types,vals, ...

TPU: send a HOST_OUT2 message
NIMU: send a message to the host

HALT

program termination

load/store, arithmetic/logic, branch, ...

same as R3000 assembly instructions|3]

FM:frame memory, SM:structured memory, sc:synchronization counter, K:unfolding degree

Appendix. DAVRID PML instruction set

[N
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execution, it isn’t required to design a customized processor

for that purpose. We, focusing on the above, described-

components and organization of our architecture, DAVRID,
and how to make it work efficiently. ]
Although we take advantage of multithreading idea to hide
latency, if there still exists much node-to-node
communication it causes network bottleneck or performance

degradation. As we have already seen in section 5, .

performance may be varied depending on the strategy of data
distribution. Optimal data distribution is important to reduce
communication overhead and thus has drawn our attention to
this topic. Our recent work on data distribution is published
in [22]. ’
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