• Title/Summary/Keyword: Networked Systems

Search Result 270, Processing Time 0.032 seconds

Fuzzy Controller for Intelligent Networked Control System with Neutral Type of Time-delay (뉴트럴 타입 시간 지연을 갖는 지능형 네트워크 제어 시스템의 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.174-179
    • /
    • 2009
  • We consider the stabilization problem for a class of networked control systems with neutral type of time delays. The neutral type of time-delays occur in controller-to-actuator and sensor-to-controller. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear system with neutral type of time-delays. The stabilization via state-feedback is first addressed, and delay-range-dependent stabilization conditions are proposed in terms of linear matrix inequalities (LMIs). Finally, an application example will be given to show the merits and design a procedure of the proposed approach.

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

Nonlinear Control of Network based Systems with Random Time Delays using Intelligent Algorithms (지능형 알고리즘을 이용한 랜덤 시간지연을 갖는 네트워크 기반 시스템의 비선형 제어)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.660-667
    • /
    • 2007
  • 본 논문은 확률특성을 갖는 네트워크 기반 제어시스템(NCS; Networked Control Systems)을 위하여 동적 베이시안 네트워크(DBN; Dynamic Bayesian Networks)와 신경회로망 기법을 이용한 지능제어기법을 제안한다. 신경회로망은 시변 시간지연을 갖는 비선형 시스템의 실시간 오차를 보상하기 위한 제어기의 최적화에 적용된다. 모듈화 신경회로망이 구성되며 이것은 제어기의 파라미터를 출력한다 가장 간단한 DBN 구조인 마코브 체인(MC; Markov Chain)이 구성되며 NCS의 랜덤 관측값을 모델링에 적용되며 예측 제어기의 구성에 또한 사용된다. 제안한 제어기법은 위성시스템의 자세제어에 적용하여 컴퓨터 시뮬레이션을 통해 성능을 검증하였다.

Decentralized Fuzzy Output Feedback Control of Nonlinear Networked Control Systems for Wireless Sensor Network (무선 센서 네트워크를 위한 비선형 네트워크 제어 시스템의 출력 궤환 분산 퍼지 제어기 설계)

  • Joo, Young-Hoon;Ra, In-Ho;Koo, Geun-Bum;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • In this paper, a decentralized fuzzy output feedback controller for the nonlinear networked control system is proposed for wireless sensor network. Especially, it is assumed that the networked control system has the output packet loss and the input transmission failure. For the fuzzy control of the nonlinear subsystem, it presents Takagi-Sugeno (T-S) fuzzy model of each subsystem and it designs the decentralized fuzzy output feedback controller. The stability condition of the closed-loop system with the proposed controller is obtained by Lyapunov functional. The obtained stability condition is represented to the linear matrix inequality (LMI) form, and the control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

ZigBee-based Real-time Wireless Networked Motor Control System (지그비 기반의 실시간 무선 네트워크 모터 제어시스템)

  • Park, Jung-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • This paper finds solutions for using ZigBee in wireless networked control system (WNCS). The round trip time delay and packet loss rate of the WNCS are measured. On the basis of these measured data, a playback buffer is used to solve the variable time delay in WNCS, and a Smith predictor is introduced to compensate for the time delay. The WNCS was able to be actually constructed to perform DC motor position control with 40 Hz sampling frequency.

Finite Alphabet Control and Estimation

  • Goodwin, Graham C.;Quevedo, Daniel E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.412-430
    • /
    • 2003
  • In many practical problems in signal processing and control, the signal values are often restricted to belong to a finite number of levels. These questions are generally referred to as "finite alphabet" problems. There are many applications of this class of problems including: on-off control, optimal audio quantization, design of finite impulse response filters having quantized coefficients, equalization of digital communication channels subject to intersymbol interference, and control over networked communication channels. This paper will explain how this diverse class of problems can be formulated as optimization problems having finite alphabet constraints. Methods for solving these problems will be described and it will be shown that a semi-closed form solution exists. Special cases of the result include well known practical algorithms such as optimal noise shaping quantizers in audio signal processing and decision feedback equalizers in digital communication. Associated stability questions will also be addressed and several real world applications will be presented.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF