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Finite Alphabet Control and Estimation

Graham C. Goodwin and Daniel E. Quevedo

Abstract: In many practical problems in signal processing and control, the signal values are
often restricted to belong to a finite number of levels. These questions are generally referred to
as “finite alphabet” problems. There are many applications of this class of problems including:
on-off control, optimal audio quantization, design of finite impulse response filters having
quantized coefficients, equalization of digital communication channels subject to intersymbol
interference, and control over networked communication channels. This paper will explain how
this diverse class of problems can be formulated as optimization problems having finite alphabet
constraints. Methods for solving these problems will be described and it will be shown that a
semi-closed form solution exists. Special cases of the result include well known practical
algorithms such as optimal noise shaping quantizers in audio signal processing and decision
feedback equalizers in digital communication. Associated stability questions will also be
addressed and several real world applications will be presented.

Keywords: Constraints, finite sets, predictive control, binary control, quantization, networked
control systems, sigma-delta modulation, noise shaping, equalizers, discrete coefficient filters,

switch-mode power supplies.

1. INTRODUCTON

Many design problems in signal processing and
control can be formulated as optimization problems in
which the set of decision variables takes only a finite set
of possible values. Typical examples include:

(i) on-off control problems such as those typically
encountered in air-conditioning systems,

(ii) multilevel control problems such as those found in
pumping of water in water distribution networks
(Usually, in these problems, one can only choose from a
finite set of pumping levels, see e.g. [1].),

(iii) power electronics problems which invariably
involve the use of switches [2-4],

(iv) audio quantization based on psycho-acoustic
considerations [5-8],

(v) design of class D amplifiers based on digitized
inputs [9],

(vi) design of FIR and IIR filters having quantized
coefficients to facilitate implementation in DSP
hardware [10],

(vii) equalization of band-limited digital comm-
unication channels subject to intersymbol inter-
ference [11-14],
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(viii) networked control systems [15-21].

These seemingly different problems can be
formulated within the common framework of
optimization over a finite set of decision values. This
paper will review this class of problems and discuss
the associated design issues.

A straightforward approach to solving these
problems would be to initially ignore input
quantization (leading to a standard linear design) and
subsequently to retro-fit the quantization aspect. This
will give satisfactory results for simple problems,
e.g. when the number of quantization levels is large.
However, in general, it turns out to be preferable to
include the quantization aspect in the design from the
beginning. We describe a general framework for
achieving this based upon a constrained finite horizon
optimization setting. We also show that special cases
of the methodology turn out to be well-known
standard solutions in different areas, like for example:
* “optimal noise shaping” quantizers in the field of
audio processing,

* “decision feedback equalizes” in digital communic
-ations, and
* “sigma delta modulations” in signal quantization.

We will show that these well-known solutions are
equivalent to the optimization based solution
described here when the optimization horizon is
restricted to unity. Of course, improved performance
is usually associated with the use of more general
design choices. Indeed, we will show that significant
improvements can often result by simply increasing
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the horizon to two or three. Fortuitously, it also often
turns out, that one does not need to consider very
large horizons to obtain near optimal performance.
(In the examples presented later we will see that
horizons of the order of 3 to 10 normally suffice).

Of course, in other cases, larger horizons may be
necessary to achieve the desired level of performance.
In these cases, a difficulty arises since the required
computations turn out to be exponential in the
dimension of the problem. (It is for this reason that it
is fortuitous that near optimal performance often
occurs for relatively small horizons). If one must use
a longer horizon, then the problem can become
intractable if it is approached in a “brute force”
fashion. To deal with these more difficult cases, we
outline recent work on semi-definite programming
relaxations which offer the potential to yield
approximate solutions.

An outline of the remainder of this paper is as
follows: In Section 2 we review selected application
areas of finite alphabet control and estimation.
Section 3 describes the main ideas which underly
receding horizon optimization. These ideas are then
applied, in Section 4, to problems of the control-type.
Section 5 presents a semi-closed form solution to the
receding optimization problem. This result gives rise
to a partition of the state space, which is characterized
in Section 6. Stability analysis and results are
included in Section 7. Section 8 deals with estimation
problems. Section 9 describes a unified view of finite
alphabet control and estimation problems. Results of
applying receding horizon optimization to diverse
application areas are included in Section 10.
Section 11 outlines some aspects related to semi-
definite programming. Section 12 draws conclusions.

2. TYPICAL APPLICATION AREAS

As a motivation for the finite alphabet constrained
receding horizon approximation methods under study
in this paper, we will first present some applications
where finite set constraints dominate performance.

2.1. Power conversion problems

Most electronics based power conversion problems
depend on the use of switches, i.e., the “input” is
restricted to a finite alphabet. As an illustration we
refer to switched mode power supplies.

Switch-mode power supplies (SMPSs) are widely
used in electronics equipment, such as computers,
which use DC-voltages that need to be provided by
the AC mains network. SMPSs utilize power
semiconductor switches, such as MOSFETs, to
synthesize the desired DC voltage levels. (See [22-
241)

A drawback of using SMPSs resides in the fact that,
due to their switching nature, harmonic currents are

injected into the AC mains and ground connection.
Also, electromagnetic noise is radiated, [25-29]. This
issue becomes especially relevant at high switching
frequencies (which are necessary in order to achieve
low ripple in the output voltage) and is magnified if
many SMPSs are connected to the same supply
network.

In order to deal with the electromagnetic pollution
problem, regulations, such as those of the FCC (in the
USA) or the VDE (in the EU), have been claborated.
These specifications put limits on the peak values of
EMI spectra, see e.g. [27].

One way to mitigate the EMI problem resides in
the utilization of improved shielding, input filters and
isolation of signal coupling paths, see e.g. [23, 24, 26,
29]. These hardware-based methods add to the
complexity, size, weight and cost of the power supply.
Thus, it may be more convenient to reduce EMI
emissions directly at the source. This can be
accomplished by careful design of the switching
strategy of the power devices, where one can make
use of ever increasing capabilities of DSP hardware.
It turns out that EMI emission levels of an SMPS can
be predicted by inspecting the spectrum of the
switching signal. As a consequence, the indirect
approach of mitigating EMI via careful design of the
switching strategy has attracted significant research,
see e.g. [30-34].

Conventional switching strategies for SMPS power
utilize periodic pulse-width-modulation (PWM) and
yield purely discrete spectra, see e.g. [35]. Thus, this
strategy is generally not a good choice if EMI
specifications are to be met. In order to broaden
signal spectra and reduce harmonic peaks, modified
PWM schemes, such as programmed PWM [30] and
frequency modulated PWM [31] have been proposed.
Another possibility lies in utilizing randomized PWM
schemes, where a nominal PWM switching function
is dithered in various ways, see e.g.[32, 33, 36].
Unfortunately, in these methodologies the mitigation
of harmonic peaks is usually achieved only at the
expense of increased output voltage ripple and this
precludes the use of these strategies in SMPSs where
tight voltage regulation is sought [35]. By realizing
that switching in an SMPS can be regarded as a
particular analog-to-digital conversion problem with
a 1-bit output, in [34] strategies based upon ZA -
Modulation, see ¢.g. [37], have been developed.

The EMI mitigation problem can readily be cast as
a finite alphabet constrained receding horizon
optimization problem, see [38]. Results are included
in Section 10.1.

2.2. Audio quantization with psycho-acoustical
considerations

An important problem in audio engineering

corresponds to the mastering process of compact
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Fig. 1. Psycho-acoustical audio quantizer.

discs. Master recordings made in recording studios
are usually very finely quantized (such as e.g. 24-bit)
or, in case of older recordings, of analog nature. In
order to reformat into a compact disc, signals need to
be converted to 16-bit resolution. This means, that
they need to be either quantized or re-quantized to
lower wordlength.

The goal is to satisfy the listener. Thus, the
difference between the original (analog) and the low-
bit quantized audio signal, should be made, as far as
possible, inaudible. Therefore, efforts should
concentrate on sound quality as perceived by the
human ear. Fig. 1 illustrates how psycho-acoustical
aspects can be introduced into the conversion process.
In this scheme a perception filter, which models the
ear sensitivity to low level noise power, is utilized in
order to give rise to the perceived error, e({).

We model the perception filter via a linear time-
invariant linear filter W(z). This filter can be fitted

to equal-loudness curves, which are available in the
literature, see e.g. [39]. The conversion problem can
be interpreted as follows:

Given a sequence of analog audio {t({)} and a

stable perception filter
W(z)=D+C(zl - A)'B, 1)

obtain a sequence {u(¢)} which minimizes a
measure of the perceived error

e(£) = W (2)(u(£) - 1(£)).

Each of the values u(¢) is restricted to belong to a
finite alphabet U , such as the 16-bit set

U=1{-2",-25+1,...,-1,0,1,...,2"° - 1.

By concentrating on the perceived noise power, we
obtain the cost function:

V=3 ().

(=0
Note that the perceived error {e(¢)} is the output to

the dynamical system:

X(£+1) = Ax(0) + Bu(f) ~ (1)),
e(0) = Cx(£) + D(u(t) — 1(£)), (2)

where x(¢) & R" is the system state. In Section 10.2

we will show that the receding horizon optimization
approach gives a useful solution to this problem.
Further details can also be found in [40, 41].

2.3. Design of FIR filters with quantized coefficients

Standard filter design techniques, such as the
Parks-McClellan algorithm, give rise to filters whose
coefficients are specified with infinite wordlength.
However, in many hard-ware critical applications,
such as those involving fixed-point application-
specific integrated circuits, only a finite wordlength
representation is allowed. In these cases, filter
coefficients are restricted to belong to a finite
alphabet, e.g. a linear combination of power-of-two
terms. Thus, the problem of approximating an infinite
precision target filter 7(z) , with a discrete

coefficient one, H(z), arises.
A common situation is where H(z) is of finite
impulse response (FIR) of length M, i.e.,

M- )
- -J
H(z)= ) hiz™/,
j=0
and is to be implemented in direct form. In this case,
each of the terms of its impulse response is restricted
to belong to a finite set U, i.e.,

h;eU, V¥j=0,.,M-1. 3)

The problem now consists in choosing the
coefficients in (3), such that the resultant filer
approximates T'(z) well, in some sense. Since filters
are usuvally utilized because of their frequency
filtering characteristics, it makes sense to state this
approximation problem in the frequency domain and
to pursue a frequency selective approximation. This
can be accomplished by introducing a frequency

dependent weighting function W(e/®) and the
following (frequency domain) L, performance
measure:

y éi J’én W(ej‘”)(H(ejw) ‘T(ejw)>,2dw’ )

where H(e’™) and T(e/") are the frequency
responses of H(z) and T(z), respectively. In this
cost function, we have included frequency weighting
by means of the term W(ej ©) . This filter weights the
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relative importance of the approximation error
(ripple) in different frequency bands. Thus, the finite
wordlength approximation effect can be concentrated
in tolerant bands and reduced in more critical bands.

By means of Parseval’s Theorem, we can
equivalently evaluate V' defined in (4) in the time
domain, as

V=3 (e()).

i=0
In this expression, the terms {e(¢)} are defined
implicitly via
> e(i)z" = E(z),
i=0
where
E(z) =W (zXH(2)~T(2))

1s the filtered error and W(z) denotes the Z -
transform of W . Note that, if we describe W(z) as
in Eq. (1), then it follows that e({) is characterized
via (2).

It can thus be seen that the quantized coefficient
FIR filter design can be stated as a constrained
quadratic optimization over an infinite horizon.
Minimization of V yields the M finite set
constrained filter coefficients, hj, Jj=01...,M-1.

In practice, one would replace the infinite horizon by
a suitable finite horizon N, see [42]. As shown in
Section 10.3, the application of the receding horizon
paradigm to the optimization problem may lead to
good designs at only modest computational burden.

2.4. Equalization of band-limited communication
channels

When a digital signal drawn from a finite alphabet
U is transmitted over a band-limited communica-
tion channel, the received signal is affected by
intersymbol interference (ISI). This means, that,
besides the unavoidable noise contamination, at each
sampling instant, the received quantity contains
contributions of several adjacent symbols. As a
consequence, the problem of recovering the input
sequence to the channel from the received output
arises. Such an ISI compensator is commonly termed
an equalizer. Fig. 2 depicts this situation. In it, the
input signal sequence {u({)} is passed through the
channel in order to give rise to the output signal
{y(0)}. The equalizer provides an estimate of the
channel input, which we will denote as {#(¢)}.

In most applications the equalizer needs to work
on-line. Thus, at time ¢=%k , the equalization

problem can be stated as that of obtaining an estimate
of the sequence
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Fig. 2. Digital communication system.

{u(0), u(l), ..., u(k)}
from the output sequence observed so far, i.e., from
{»(0), ¥Q), ..., y(k)}.

In - particular, the maximum likelihood sequence
estimator (MLSE) yields the estimate

{0(0), uQ1), ..., u(k)}

which maximizes the likelihood of the received data,
i.e.,the conditional probability density. In this
estimate, each element is restricted to belong to the
finite alphabet U .

It is common to model the dispersive nature of the
channel as a linear discrete time system

(&) =W (2)u(l) + n(?),

or, equivalently, in state space form as
x(¢+ 1)y = Ax(£) + Bu(¥),
y(0) = Cx (&) + Du(?) + n(f).

In both models, n(#), is white and independent

zero-mean Gaussian noise of variance r . These
characterizations may include the effect of a
whitening matched filter and any other filters.

With a zero input to the channel for ¢ <0 (so that
x(0)=0), it can easily be verified that the likelihood

of the output sequence received is given by

PUY(0), ()., ()} | {(0),u(1), .., u(k)}) = ae ™2,
where

k
Va2 W (2u(0) - y(0)? )

=0

and o isaconstant.

By applying the natural logarithm, we obtain that
the MLSE needs to minimize V, that is, it requires
the solution of a finite set constrained quadratic
optimization problem. Since the upper limit of the
summation in (5) increases with time, the MLSE
relies on solving an optimization problem which is
intractable. In order to overcome this problem and to
obtain an equalizer of limited complexity, one can
deploy the receding horizon approach presented in
Section 8. Further details are given in [43]. Results
are also discussed in Section 10.4.

2.5. Networked control systems
Networked control systems (NCS) are control
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Fig. 3. Networked control system.

systems in which controller and plants are connected
via a (digital) communication channel. One such
configuration is depicted in Fig. 3. In this scheme, a
centralized controller is connected to several sensors
and actuators in order to control a collection of plants.

Practical applications of NCS abound. They have
been made possible by technological developments,
including the development of MEMS arrays, and may
deploy wireless links (e.g. Bluetooth or IEEE 802.11),
Ethernet (e.g. [IEEE 802.3) or specialized protocols
such as CAN.

While the use of digital communication channels
enables novel teleoperating applications, new and
interesting challenges also arise. The network itself is
a dynamical system that exhibits characteristics
which traditionally have not been taken into account
in control system design. These special characteristics
include quantization and time-delays and are a
consequence of the fact that practical channels have
only a limited bandwidth. As a consequence, a
networked controller should be designed to take into
account the communication channel.

Since practical digital communication channels can
only carry a limited amount of bits per unit time,
every signal transmitted needs to be expressed via a
finite number of bits. Thus, quantization forms a
central issue in control over digital networks. It is
easy to see that the resulting control law problem can
be formulated by means of the finite set constrained
control framework developed in [44]. This idea has
been further investigated in [45].

If the network traffic is to be kept at a minimum,
one can add other restrictions. In particular, besides
transmitting quantized signals, the down-link traffic
can be further reduced by restricting the controller
such that only one actuator can be addressed at any
given time, see also related work in [19, 46]. We can
then optimize performance subject to these
constraints.

For that purpose, consider a set of linear time-
invariant noiseless MIMO plants with a total number

of m inputs and a given reference trajectory r* (/).

Furthermore, assume that the link between the
controller and actuators is characterized by a known
and fixed time-delay and that data is sent at a
bounded rate. This is achieved by imposing the
following two communication constraints on the
design:

Restriction 1: The data sent from the controller to
each actuator is restricted to belong to a (small and
fixed) finite set of scalars, U .

Restriction 2: Only data corresponding to one
input of the plants can be transmitted at a time.
Between updates, (which may be separated by several
sampling periods) all plant inputs are held at their
previous values.

The delay between controller and plants can be
incorporated into the model:

x(C+1) = Ax(0) + Bu(0),
y() = Cx(0), (©6)

where
u(0) =[u; (0), uy (0), ..., u, (O,

and x({)e R" is the system state. Note that this
description encompasses the entire set of plants.

The design problem can thus be stated as that of
developing a control strategy, which drives the
model (6) to the reference r*(¢), while not violating

Restrictions 1 or 2. Thus, the control strategy for the
networked system is characterized by choosing, at
each time step, which of the m inputs to access and
what to send. The controller needs to divide its
attention between all plant inputs.

Rather than sending the control signals directly, it
is preferable to send their increments:

Auy (0 2 u; () —u; (L-1), @)

when nonzero. This choice generally requires less bits
to specify the control signal. The pair (Au;(¢),i) is
received at the actuator node specified by the index
i. The actual signal u,({) is reconstructed at the

plant side by discrete time integration as shown in
Fig. 4.

Restrictions 1 and 2 can be summarized by means
of a simple finite-alphabet constraint on the
increments (7). More precisely, at every time instant
(, the vector

Au(0) Eu(0)~u(t-1)

is restricted to belong to the finite alphabet V,
defined as:

VZ{VeR" such that ve U:
v=[o 0 v o .0
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Fig. 4. Control architecture for an NCS.

As illustrated in Fig. 5 for the case m =2, this set
contains all column vectors formed by one element of
U , whilst all its other components are zero.

The performance of the model (6) can be
quantified by means of the quadratic cost:

2
>
R

ya gé”x(f) _x (f)H; + guu(f) _u (e)‘

where Q and R are positive definite matrices. The

signals x*(¢) and u*(¢) are target trajectories for
the plant state and inputs, respectively and depend
upon r*(f).

A key, and distinguishing feature of this strategy is
that by minimizing ¥ so that control increments are
supplied only when they are required, bandwidth
utilization is reduced. Clearly the minimization of V
over a finite set constrained input cannot be achieved
in practice. In contrast, the receding horizon approach
presented in the present paper is computationally

inexpensive and may yield good results,
see Section 10.5 and also [20, 21].

3. RECEDING HORIZON OPTIMIZATION

In principle, all of the design problems referred to
in Section 2 lead to infinite horizon minimization
problems where decision variables are restricted to
belong to a finite alphabet. These combinatorial
optimization  problems are  computationally
intractable. A useful practical approach is to restrict
the optimization to a finite horizon and to solve this
problem in a “receding horizon” fashion.

In order to apply the receding horizon optimization
idea, it is convenient to categorize applications as
Control Problems and Estimation Problems. The
characteristic which we use to distinguish between
those two classes depends on whether the system

v
e HK——X K=
0
/Aug
X
v
X
XXX
0 Aul
X
X

Fig. 5. Construction of the finite set 7 .

state is known or not. We use the term Control
Problem in order to designate those applications,
where the state is known. Thus, this category
embraces binary- and multilevel- control problems,
power electronics problems, signal quantization
problems, quantized coefficient problems and the
networked control system design method described
above. On the other hand, the digital channel
equalization problem falls into the Estimation
Problem category. Although the channel model is
assumed to be known, its input sequence is not.
(Otherwise, the problem would be already solved.) As
a consequence, the system state is unknown. Note,
however, that some prior knowledge of the system
state may exist and can be helpful in order to provide
channel input estimates, see Section 8.

To highlight the main issues underlying receding
horizon optimization, we temporarily restrict our
attention to Control Problems. The core idea is that one
considers a finite block (or horizon) of data stretching
from time / to time ¢+ N, say. Having carried out
the associated optimization one “locks in” the decision
variable at time ¢. One then moves onto time £ +1
and considers a finite block of data stretching from
time (+1 to time /+N+1 and “locks in” the
decision variable at time ¢+1. This procedure is
repeated continuously leading to a “rolling horizon”
optimization strategy. It is precisely this rolling horizon
idea that allows us to simplify the associated
computational requirements; i.e., one considers the
finite alphabet restrictions in blocks of length N
which roll-forward as time increases. A key
observation is that the first decision variable in the
block optimization is often insensitive to increasing the
block size beyond modest numbers. The importance of
this observation lies in the fact that the first decision
variable is the only variable that is “locked in” at such
time step; the remaining variables are simply used to
evaluate the possible impact of future decisions. As a
consequence, receding horizon optimization methods
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may give excellent results even with modest horizons.

In what follows we address finite alphabet Control
and Estimation problems separately. We will link
them together in Section 9.

4. RECEDING HORIZON CONTROL
PROBLEMS

For ease of exposition we will restrict our attention
to the case where references are set equal to zero. The
extension to more general reference trajectories
presents no technical difficulties and is treated,
e.g. in [40, 42,47, 43].

In this framework, the Control Problem
applications presented in Section 2 can be captured
by the following fixed horizon cost function
beginning at time & :

k+N-1
BERG+M+ Y @) o+ @l ©®
=k

In this expression, we use x'(¢) and »'({) to

denote predictions of the state and the output and
u'(£) to denote the decision variables. More

precisely, these quantities are related via:

X'(0+1) = AX'(0) + Bu' (1),
1'(0) = Cx'(¢) + Du'(0), )

with initial condition x'(k)= x(k), the system state,

which is assumed to be known. Each of the values
u' (@ , f=kk+1,..k+N-1 is restricted to

belong to the finite set:

U:{S1,52,...,S"U }, (10)

which contains #;, elements.

The value of the cost function (8) depends upon the
values chosen for the sequence

'), u'(k+1), .., u'(k+ N-1)}.
For notational convenience, we define the vector:
u'(k)
) & u'(k: +1)
u'(k +.N -1

and write V(i (k)).
The optimizers 7°’'(k) are obtained via
minimization of (8), i.e., we seek:

7oP(k)2 arg min V(i (k). (11)
dkyeuN

i
4 k)
uCPt kY =
ISSS
= T
1 i ¥
Mokt k42 ke ke {

sk 4 1) = (k) + Bu®Pt(k)

w Pk L) =N
§
ORSEEESH
%x |
B Al k42 b=3 bt k+5 {
r(h+2) = ek 4+ 1)+ Bu®P (k + 1)
B \\\\
W 2) _\\\§§ - ]
1
a M2 h4+3 b=t DS MG {

Fig. 6. Receding horizon principle.

Here, the finite set U N is defined via the Cartesian
product:

UV 2Ux...xU,
in accordance with the restriction on each value,
u(HelU.
Following the receding horizon idea described in
Section 3, only the first element, namely:
u® (k)2[I 0 0]z %" (k)
is utilized. This value also yields the successor state:

x(k +1) = Ax(k) + BuP" (k).

Having fixed »®'(k) and calculated x(k+1), at
the next step a new optimization is carried out on the
interval [k+1,k+ N] by using the updated state,
x(k+1) . This gives rise to a new optimizer

#%(k+1) and the value u”'(k+1) . The
procedure is repeated ad-infinitum or, in the FIR filter
design case, until all coefficients have been calculated.
Fig. 6 illustrates this idea for the case N =5. As can
be seen, the window is of fixed size and moves (or
slides) forward at each optimization step.

5. CHARACTERIZATION OF THE OPTIMAL
SOLUTION

In this section we will provide a semi-closed form
solution to the optimization problem (11). To proceed,
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it is useful to vectorize the cost function (8) as
follows:

Define:
x(k +1) A
2| D] Le A4
x(k + N) 4N
B 0
.| 4B 0 0
(I)= . )
AN-'p 4N2B AB B

so that, given x(k)=x and by iterating (9), the
predictor X(k) satisfies:

3(k) = @ii(k) + Ax.

Hence, the cost function (8) can be re-written as:
Vi k) =Vy + @0 Waik) + 2@ (k) Fx, (12)

where
w2ao oo+ ReRVY,
F2aTQA e RN,
0 2 diag(Q,...,0,P) e RV
R 2 diag(R,...,R) e RVY

and ﬂ does not depend upon ii(k).

By direct calculation, it follows that the minimizer
to (11), without taking into account any constraints on
u(k), is:

7% (x)=-W ' Fx. (13)

Our subsequent development will utilize a nearest
neighbour vector quantizer. It is defined as follows:

Definition 1: Vector Quantizer Given a countable
(not necessarily finite) set of non-equal vectors

B=1{b,by,..} CR" | the

quantizer is defined as a mapping gqz:R"2 > B

nearest neighbour

which assigns to each vector ceR"2 the closest
element of B (as measured by the Euclidean norm),
i.e, ggp(cy=b; > B ifandonlyif ¢ belongs to the

region:
{ceR”B Je=8]7 <e-b,[, vb; % b:.b; < BY. (14)

Note that in the special case, when ngp=1, the
quantizer defined above reduces to a standard scalar

quantizer.

Given Definition 1, we can now restate the solution
to (11). This leads to:

Theorem 1: (Closed Form Solution) Suppose

N
U ={V1,V2,,..,V },

where p =n{}/ , then the optimizer in (11) is given
by:
) =W gy (W), (15)

where the nearest neighbor quantizer qU ~ () maps

R"  to the finite set {j", defined as:
~Ng~ o~ ~ ~ 12 N
TV b v ovph v =Wy, vieUY. (16)

Proof: For fixed x, the level sets of the cost (12)
are ellipsoids in the input sequence space R N These

are centered at the point 702'(x) defined in (13).

Thus, the optimization problem(11) can be
geometrically interpreted as follows: Find the point

#(k)e U" , which belongs to the smallest ellipsoid

defined by (12) (i.e., the point which provides the
smallest cost whilst satisfying the constraints).

In order to simplify the problem, we introduce a
change of variables:

Ak =w" k),

which transforms U" into {7V defined in(16).

The optimizer #°!(x) can be defined in terms of
this auxiliary variable as:

a0 =W "ag_min Jy(ak), (A7)
alkyey

where:
Iy (k) & (i) @)+ 2(ack)" w2 Fx. (18)

The level sets of J, arespheresin R N centred at
AP (xy2 w2 Fx,

Hence, the constrained optimizer to (18), is given by
the nearest neighbour to ﬁzgt(x) , namely:

arg min _Jy (@) =q_n(-W ?F0).  (19)
ke v

The result (15) follows by substituting (19) into (17). [
It is worth noting, that the optimizer z%/(x)
provided in Theorem 14 is, in general, different to the
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sequence obtained by direct quantization of the
. .. . _.opt
unconstrained minimum (13), i.e. q, v (i Pl .

As a consequence of Theorem 14, the receding
horizon controller satisfies:

u”P' (x)=[1 0 olw" quN(—W'T/2Fx). (20)

This solution can be illustrated as the composition
of the following transformations:

T -1
xeR! __EF_) ﬁﬁlc” w zq@N(') P [10-- 'O]_)uopt‘
@)

It is worth noticing that 9 ~ () 1s a memoryless

nonlinearity, so that (20) corresponds to a time-
invariant nonlinear state feedback law. In a direct
implementation, at each time step, the quantizer
needs to perform »—1 comparisons.

6. STATE SPACE PARTITION

Expression (14) partitions the domain of the
quantizer into polyhedra, which are called Voronoi
regions [48]. Since the constrained optimizer

#%'(x) in (15) (see also (21)) is defined in terms of
q(7 ~ (), a partition of the state-space can be derived,

as shown below:
Theorem 2: The constrained optimizing sequence

i°P!(x) in (15) can be characterized as:

#P(x)=v, > xeR,
where

A 2 2
R, 2{zeR":2(v;—v,) Fz e”vf'“W Il - (22)
Vv #v,v; cU"}.

Proof: From Expressions (15) and (16) it follows
that 7°P'(x)=v, if and only if qu(—W_T/zFx)

= ;l. . On the other hand,

-7 Fx - ;I.‘z =" 2Fx“2 o + 25T T2 Ex

2 2
so that "—W'T/ZFX—;I.H = ”—W_T/zFx—{,j“ holds

. . - o~ - - .2
if and only if 2(,-5) W T/2Fx£”v J“ -
This inequality together with expressions (16)
and (14) shows that qUN(—W_T/zFx)z;I. if and

only if x belongs to the set R; defined in (22).

= regions Re and Ry
oy are cmpty
hd -
s
vy 7
-~ - 4
~
~ s
S~ ~ 7
7’ O~
7 S~
7”7 S~
S~
7 B L
7 by = no cmpty
P regions

Fig. 7. Partition of the transformed input sequence
space with N =2 (solid lines) and two

examples of W 2Fx,xeR (dashed
lines).
This fact completes the proof. 0
The n,]Jv regions R; defined in(22) are

polyhedra. They can be written in a compact form as:
where the rows of D; are equal to all terms

2(v; —vj)TF as required, while the vector H;

. 2
contains the scalars ”v i “W - ||v,||§V .

Remark 1: Some of the inequalities in (22) may
be redundant. In these cases, the corresponding
regions do not share a common edge, i.e., are not
adjacent. This phenomenon is illustrated in Fig. 7,
where the regions R, and R; are not adjacent. The
inequality separating them is redundant. Also,
depending upon the matrix W “T2F | some of the
regions R; may be empty. This might happen, in
particular, if N >n. In this case, the rank of F is
equal to » and the transformation wT2F  does
not span the entire space RV Fig. 7 illustrates this
for the case n=1, n; =2 and N=2. As can be
seen, depending on the unconstrained optimum locus
—W_T/ZFX, x € R, there
exist situations in which some sequences j will

given by the (dashed) line

never be optimal, yielding empty regions in the state
space. On the other hand, if the pair (4,B) is

completely controllable and A4 is invertible, then the
rank of F is equal to min(N,n). In this case, if

n> N, then wT2E s onto, so that for every

v jeij there exist, at least one, x such that
qﬁN(—W*T/zFx)=; j and none of the regions R;

are empty.
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In the receding horizon law of (20), only

instead of (at most) n{}/ regions are needed to
characterize the control law. Each of these regions is
given by the union of all regions R; corresponding
to vertices v;, having the same first element. The

appropriate extension of Theorem 6 is presented
below. This result follows directly from Theorem 6.
Corollary 1: State Space Partition Let the
constraint alphabet U be as given in(10) and
consider the following partition into equivalence

classes:
N N
vh= ) ul,
i:l,...,nu

where:
ul2weuM:1 0 0]v=s,).

Then, the receding horizon control law (20) is
equivalent to:

u()pr(X)=S,', if xeX;, i=L2,...y. (23)

Here, the polyhedra X; are given by:

X; & U X;;, where:
j:\vjeUilv

2

W

”vk”e UN\UiN 1

>

X;2{zeR":2(v; - v ) Fz<v, ”5v _"vf’l

It should be emphasized that this description requires
less evaluations of inequalities than the direct

calculation of the union of all R i (as defined in

(22)) with v €U ,-N , since inequalities correspond -

ing to internal borders are not evaluated. The state
space partition obtained can be calculated off-line.

7. CLOSED LOOP STABILITY

We have seen above that the finite alphabet
optimization problem leads to a semi-closed form
solution, which can be utilized in the various Control
Problems described in Section 2. However, optimality
over finite horizons alone is usually an inadequate
measure of performance. Ideally, one would like to
establish other measures of the achieved performance,
especially asymptotic stability. In this section we
explore various stability issues associated with this
the finite alphabet Control problems under study.

The closed loop that results when joining the
system of (6), or of (2) with zero reference, with the
receding horizon law (21) can be described via the
following piecewise-affine map:

x(k+1) = g(x(k)),
g(x(k)) & Ax(k) + Bs;,

(24)
if x(k)e X;,i=12,..n.

This characterization follows directly from
Corollary 1. Piecewise-affine maps are mixed
mappings and also form a special class of hybrid
systems with underlying discrete-time dynamics, see
e.g. [49, 50] and the references therein. They also
appear in connection with some signal processing
problems, namely arithmetic overflow of digital
filters [51] and XA -Modulators [52, 37], and have
also been studied in a more theoretical mathematical
context, see e.g. [53, 54].

Since there exist fundamental differences in the
dynamic behavior of (24), depending on whether the
open loop systems of (6) and (2) are stable or
unstable, i.e. on whether the matrix A is strictly
Hurwitz or not, it is convenient to divide the
discussion that follows accordingly.

7.1. Stable open loop systems

If A is strictly Hurwitz, then the states in (24)
(and thus in (6) and (2)) are always bounded, when its
inputs belong to a finite, and hence bounded,
constraint set law. Moreover, it can also be shown
that essentially every state trajectory either converges
towards a fixed point or towards a limit cycle, see
e.g. [54, 55].

Whilst the above properties apply to general
systems described by (24), where X; defines any
partition of the state space, the following result is
more specific. It utilizes the fact that the law " (x)

is optimizing in a receding horizon sense in order to
establish a stronger result.
Theorem 3: (Asymptotic Stability) If A is

Hurwitz, OeU and P= P’ >0
Lyapunov Equation ATPA+Q =P, then the closed

loop (24) is asymptotically stable.

Proof: The proof follows standard techniques used
in the Model Predictive Control framework as
summarized in [56]. In particular, using the notation

of [56], we choose X; =R"
Vxe Xy . Clearly Assumptions Al-A3 hold and

satisfies the

and Kr (x)=0,

XN = Rn .
Direct calculation yields, that Vxe X Ix

F(f (k0= F(x)+((x,x ¢ (x)
= (Ax+ Bx ; (x) P(Ax+ Bi (x)) = x" Px+x" Ox
+(c; (x) R (x) = x" (A" PA+Q — P)x=0,

so that also A4 is satisfied. Global attractiveness of
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the origin follows. I
As can be seen, the receding horizon law (23)
ensures that the origin is not only a fixed point, but

also that the entire space R” is its basin of attraction.

It should be emphasized that, if 0gU , then the
origin is not a fixed point.
Remark 2: Note that the use of the final state

weighting terms "x’(k + NY = x% (k + N)”i in (8)

effectively gives an infinite horizon cost save that the
finite alphabet constraint is relaxed outside the
interval (k,k+ N —1). Relaxations of this type and

others are commonly deployed in finite alphabet
problems, see Section 11.

7.2. Unstable open loop systems

In case of strictly unstable open loop systems (6)
and (2), the situation becomes more involved.
Although fixed points and periodic sequences may be
admissible, they are basically non-attractive, see
e.g. [54]. Moreover, with input signals which are
limited in magnitude, there always exists an
unbounded region, such that initial states contained in
it lead to unbounded state trajectories. This does not
mean that every state trajectory of (24) is unbounded.
Despite the fact that the unstable open loop dynamics
(as expressed in 4 ) makes neighboring trajectories
diverge locally, under certain circumstances the
receding horizon law may keep the state trajectory
bounded.

As a consequence of the highly nonlinear (non-
Lipschitz) dynamics resulting from the quantizer
defining (15), in the bounded state case the resulting
closed loop trajectories may be quite complex. In order
to analyze them without exploring their fine
geometrical structure, it is useful to relax the usual
notion of asymptotic stability of the origin. A more
useful characterization here is that of ultimate
boundedness of state trajectories. This notion refers to

convergence towards a bounded region of R", instead
of to a point, see e.g. [57]. (Ultimate boundedness has
also been considered in [58] and by several other
authors in the context of practical stability.) We refer
the reader to the literature, especially [44] where these
more detailed issues are discussed and analyzed for the
case of unstable open loop plants.

8. RECEDING HORIZON ESTIMATION
PROBLEMS

Mirroring the development in Sections 4 to 7, we
can develop a receding horizon estimation scheme for
situations such as the channel equalization problem
outlined in Section 2.4.

In order to obtain a scheme of fixed complexity, we
fix two integers N; >0 and N, 21 and, at each

instant ¢ =4 , consider explicitly only those output
samples contained in the set:

Y(k) 2 {p(k = Np), 3k = Ny + 1., p(k + Ny =1}
This set contains only N elements, where:
N=N;+N,.

Note that, if N, is chosen to be larger than unity,

then the scheme includes previewing and thus
decisions are delayed.

We will summarize the information prior to time
(k—=N)),ie,

{(0), y(A),..., y(k = Ny = 2), y(k — N} - 1)}
via an a priori state estimate z{(k—XN;). Thus,
suppose that

x(k=Np) ~ N(z(k - N,), F,), (25)

where z(k—N|) is an a priori estimate for
x(k—N;) which has a Gaussian distribution of

covariance P,. In this characterization, the matrix

P' reflects the degree of belief in this a priori state

z

estimate. Absence of prior knowledge of x(k—N))

can be accommodated by using PZwl =0.

The assumption of Gaussianity for the initial state
and noise leads to the cost function

Vo 2tk = M) = 2k = N

k+Ny—I (26)
+71 S () - Cx'(0) - D' (D)) .
=k~Ny

In this expression, x'(k—N;) and u'(#) are the
decision variables. The other states follow the
prediction model:
X(U+1)=Ax"(0)+ Bu'(¢), {=k—-N,...k+N,-1.
Note that, as opposed to the predictors (9) utilized for
Control Problems, here the initial state x'(k — N;) is
unknown and is thus another decision variable.

The cost 7, depends upon the values adopted by
x'(k—N;) and the vector

[ u'(k-N)) ]
u'(k— Ny +1)

uB= b

| u'(k+Ny=1) ]
Hence, we write V, (u(k),x'(k— N))).
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Minimization of ¥, yields both a possible input

sequence u””

P (k- Ny

{k) and an a posteriori state estimate

opf(k}
~ =arg min Vz @), x'{(k —N)).
Xa‘m (k - NI) u(k)eb

27

It should be emphasized here, that x”'(k~N))

constitutes a revised state estimate. It differs from the
a priori estimate z(k—XN;) as permitted by the

confidence matrix P
Following the receding horizon paradigm of
Section 3, only the present value:

atk) 2 {ON, 1 0y, jg()})f(k)

is delivered at the output of the equalizer {estimator), At
the next time instant, the shifted data window Y(k +1)

and an a priori estimate z{(k - N, +1) are used in an
optimization which yields #(k +1) and so on.

Remark 3: The provision of an a priori estimate,
z{k - Ny), together with an associated degree of

belief via the term |&'(k = N}~ z(k = N))[o1 in the

cost provides a means of propagating the information
contained in the data received before {=4-~N,.
Consequently, an information horizon of growing
length is obtained. Notice, however, that we have
again deployed a relaxation by only considering the
finite alphabet constraints in blocks of size N. The
initial state weighting term

'tk = 8,y = 20k = W)

infinite horizon problem where the constraints are
relaxed outside the interval & — N,k + N, —1. Thus,

in contrast to considering the entire sequence
{v(0),.., ylk+ Ny - 1)} explicitly, the
computational effort is fixed by means of the window
length N.

Various methods for information propagation via
the a priori state estimate can be conceived. Each
optimization step provides estimates for the state and
input sequence. One can re-utilize these decisions in
order to formulate a priori estimates for x({), via

effectively gives an

propagation in blocks according to:
20y = AVXP - NY+ Mu™ (L~ N,),  (28)

where

Mé[AN“B AN2p AB B].

4; sih =11 sk +2) sk -D)
o

Yo
X1 TEED GG ﬁk%s%

Sk a; (k) S~ 3

S
ik - ,Xy —9) J/A+U/r-;} +4)/L:4

b -2y A+ 2lh + 4)

£ X o
i V(k ~ 4@(& - 1)Xy(k - Q)Xy(k- - 5)

Fig. 8. Information propagation.

In this way, the estimate obtained in the previous
block is rolled forward. Indeed, in order to operate in
a receding horizon manner, it is necessary to store N
a priori estimates. This is depicted graphically in
Fig. 8 for the case Ny =1 and N, =2.

Since the states x(¢) depend on the finite
alphabet input, one may well question the assumption
made in (25) that x(k -~ N;) is Gaussian. However,
we can always use this structure and simply interpret
the matrix P, in the cost (26) as a design parameter.

As a guide for tuning P,, we recall that in the
unconstrained case, where the input and initial state
are Gaussian, ie., u()~N{O,0,) and x(0)
~ NGy F) , the Kalman Filter provides the
minimum variance estimate for x(k—A;) . Iis
covariance matrix P(k-—N;) obeys the Riccati
difference equation:

P(7+1)=BQ,B" + AP())A"
~K(O(CPOHCT +7+DQ,DTKT (1) (29)
PO)= 5,

where
KO 2upoxc” +Bo, D" YCP(HCT +r+ DO, DY

A further simplification occurs if we replace the
recursion (29) by its steady state equivalent. In
particular, it is well known, see e.g. [59], that, under
reasonable assumptions, P(¢) converges to a steady
state value, P, as f£-»o. The matrix P satisfies
the following algebraic Riccati equation:

P=BQ, B +4PAT —(4PC" + BQ, D).

. (0
(cPC’ +r+DQ,DTY Y (CP4" +DQ,B").
This would be a possible choice for the matrix £, in
the cost function.
The receding horizon estimator results from
bringing together the a priori estimate of (28) with the
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ik , k)
[0, 1 O0xy_4)

z(k — Ny) | Optimization (27)
—

uOPt (k)

M

Fig. 9. Receding horizon estimation architecture.

optimization (27). It is schematically depicted in
Fig. 9. As can be seen in this figure, the estimator
includes a feedback path which provides the a priori

estimate z(k—N;) needed in the decision

process (27).

By adapting the procedures outlined in Sections 4
to 6, we can develop a semi-closed form solution to
the optimization problem, which yields an estimation
scheme which is easy to implement. More details can
be found in [43], see also Section 10.4 for results.

9. A UNIFIED VIEW

Inspection of the cost functions used for the
Control Problems, see (8) and for the Estimation
Problems given in (26) reveals similarities. In both
formulations, decision variables are to be adjusted
such that the states of a dynamic model behave in a
certain manner.

The main difference lies in the boundary
conditions. In the Control formulation, the final state
weighting term

e+ W[

is introduced in order to summarize behaviour of the
system over the semi-infinite future horizon
{>k+ N via state values at time ¢/ =k + N . On the
other hand, in the Estimation Problem case, the term

' — Ny = 20k = N

is used to summarize the past system behaviour for
L<k—-Nj.

With this as a background, it is easy to conceive a
formulation which includes both types of boundary
conditions by penalizing both initial and terminal
state deviations. The idea is to approximate the effect
of future and past trajectories on decisions concerning
the interval k- N, <{<k+N,. This unifies the

state estimation and control problems.

10. APPLICATIONS REVISITED

The general concepts introduced in the preceding
sections can be applied to the applications discussed

in Section 2. A brief overview is given below:

10.1. Power conversion problems

The problem is readily formulated as a receding
horizon finite alphabet control problem of the type
discussed in Section4. It turns out that a unitary
constraint horizon, N =1, in the receding horizon
formulation gives rise to a switching strategy which
is equivalent to that provided by a general ZA -
Modulator. XA -Modulators have been mainly
developed in an analog-to-digital conversion context
and have also found their way into Switched-Mode
Power Supplies [34]. It has recently been shown [38]
that horizons greater than 1 give improved harmonic
suppression. In particular, choosing a horizon N =3
gives about 10 dB improvement in the peak spectral
distortion as can be appreciated in Fig. 10. As a
consequence, an SMPS whose switching signal is
provided by the receding horizon optimization
scheme can be expected to have lower EMI emissions
than an SMPS which uses a ZA -Modulator based
approach.

10.2. Audio quantization
Again this problem is readily converted to a
receding horizon finite alphabet control problem as in

Periodogram {dB]

100 200 300
Frequency [kHz]

N = 3, stabilizing P

Periodogram [dB]

100 200 300 400 500
Frequency [kHz]

Fig. 10. Periodogram of the switching signal in an
SMPS.

3 bit

4 bit

5 bit
4/

[ ——— S ———
a i 2 3

N 4
Fig. 11. Distortion introduced by receding horizon
audio quantization.
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Frequency Response

28

Freque?wcy [rad/zs]
Fig. 12. Frequency response of the target filter T
and of the frequency weighting filter.

B ~
= -

Frequency Response

, Frequeﬁcy [rad;s]

Fig. 13. Frequency response of the filtered
approximation error for N =3 (solid) and
for direct quantization (dashed).

Section 4. In this case, the horizon-one solution turns
out to be equivalent to the Noise Shaping Quantizer,
which has been widely studied in the audio
literature [5, 6, 7, 60] and has also been implemented
in many consumer audio products. Again, using
constraint horizons greater than one is generally
beneficial. Fig 11, which is taken from [40],
illustrates the effect of the horizon on the distortion
introduced in the quantization process. In this figure,
N =0 denotes straight quantization. As can be
appreciated, performance can be significantly
improved by choosing a horizon N=2, see
also [41]. Note, however, that the distortion levels are
not reduced significantly with horizons larger than
N =3. The performance is asymptotic in the horizon
length. Thus, it is recommendable to use small,
though non-unitary, horizons.

10.3. Design of FIR filters

A similar situation arises in the FIR filter design
problem outlined in Section 2.3. The horizon-one
solution is well-known in the signal-processing
literature, see [61, 62, 63, 64]. Using larger horizons

Probability of Symbol Error

R
Output Signal to Noise Ratio (dB)

Fig. 14. Bit-error rate achieved with the receding
horizon estimator of Fig.9 with L, =1,

L, =2 and stabilizing P as given in (30)
(stars), with P=0 (circles) and with a
standard DFE (squares).

typically gives better performance [42].
As an example, taken from [42], consider an
equirriple target filter T(z) and a frequency

weighing filter W(z), whose frequency response is

included in Fig. 12. Fig. 13 contains the frequency
response of the filtered approximation error for two
designs. In both cases, the FIR filters designed are of
length 100 and each of the coefficients is restricted to
belong to the 6 bit set U ={-32,-31,...,31}. The

first filter is obtained via direct quantization of the
impulse response of T and is denoted as N =0.
The other design is provided by a receding horizon
procedure with horizon N =3.

As is apparent from these figures, the filter
obtained via receding horizon optimization is closer
to T(z) than the design obtained by direct

quantization. This  performance increase is
accomplished by concentrating the approximation
error mostly in the less-important frequencies, as
dictated by the weighting function W(z).

10.4. Equalization of band-limited communication
channels
Not surprisingly, the simplest case of L =0,

L,=1 and P=0 cormresponds to a well-known

scheme, namely the Decision Feedback Equalizer,
described e.g. in the textbook [11]. Horizons greater
than one give improved performance, compare also
to [65, 66]. It is also known that including degrees of
belief in past estimates via P=#0 improves
performance even further [43]. Fig. 14, which is
adapted from [67], illustrates these aspects for the
case of a binary channel with impulse response given
by:
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Fig. 15. Top: Control action sent by the Networked
Controller, Bottom: Level Measurement.
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Fig. 16.Top: Control action sent by the Networked
Controller, Bottom: Level Measurement.
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Fig. 17.Top: Control action sent by the Networked
Controller, Bottom: Level Measurement.

H(z)=1-12.8271+20.627> +17.927°
—182z7%+4.527,

It is apparent from this figure that using larger
horizons and the incorporation of a finite degree of
belief in past estimates is beneficial. Choosing P >0
leads to faster error recovery and thus prevents
instability related phenomena. Further details can be

found in [43].

10.5. Networked control systems

This application is discussed in detail in [20, 21].
We have found that relatively small optimization
horizons are effective when dealing with simple
problems. A full scale experiment is described in [20],
where we have applied the methodology to level
control of five tanks. In the experiment, an
unmeasured inflow disturbance was introduced into
Tank 2 at 35 seconds and an extra outflow valve was
opened on Tank 3 at 1090 seconds. Figs. 15-17, show
the control increments sent by the controller to each
tank together level measurements.

It can be seen from these figures that, when the
disturtbance occurs in Tank 2, most down-link
bandwidth is dedicated to the control of its level. Also,
it is easily observed that the controller pays attention
to the other tanks when the measured level in Tank 2
approaches the desired level. A similar effect happens
when Tank 3 is disturbed.

11. SEMI-DEFINITE PROGRAMMING
RELAXATIONS

The above problems can be seen to be special cases
of the following optimization problem:

wft]

where wu; € {+1,-1} for all ¢. This is a quadratic

boolean optimization problem. The constraints can be
converted to quadratic equality constraints of the
form:

u,-2—1=0.

This class of problems are non-convex and are known
to be NP-hard. We have avoided this difficulty in
Sections 7 to 9 by suggesting the use of a relaxed
strategy in which the finite alphabet constraint is only
applied over a fixed receding horizon window.
Outside that window, the constraints are ignored
leading to a relaxed infinite horizon problem. This
yields computational feasible algorithms for simple
problems (e.g., scalar input and constraint horizon 10
yields approximately 1,000 alternatives for the
decision variables at each time step). However, it is
clear that for larger problems, the required
computations can become intractable (e.g., for 10
inputs and horizon 10, one has approximately 10%
alternatives for the decision variables at each time
step). Thus, some form of relaxation is necessary to
obtain computationally tractable solutions. As an
illustration, one can obtain bounds via semi-definite
programming relaxations:
Consider the (non-convex) problem:
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min UTQU;

u?~1=0.

T
U:[u],...,uN] N
subject to

The associated Lagrangian function is

LWU,A)=U"QU - i A -1

i=]
=UT (O~ AU + trace A .

For the Lagrangian to be bounded from below, we
require O—A>=0 (ie.,, Q— A needs to be positive
semi-definite). The dual problem is therefore a
(convex) semi-definite program:

max trace A,

subject to O-A>0. Adiagonal

Note that, because the original (primal) problem is
non-convex, there will, in general, be a duality gap.
However, the solution to the convex dual problem

gives a lower bound on the cost of the primal problem.

This follows since for any feasible U,A we have

QTQQEQTAQ=ZA,,~L1[2 =trace A . 31
i=1

This bound can be used in a variety of ways. For
example, given a solution obtained by relaxing the
primal problem (say by using finite constraint horizon
methods) we can evaluate the associated cost and
compare it with the lower bound in (31). Other
relaxations are possible. Indeed, the problem of
relaxing the primal problem has a long history in
general optimization theory. A relaxation technique
commonly deployed is as follows:

Let F=QQT , then QTQQ_=traceQQQT
=trace JI'. The matrix I" has rank 1, is positive
definite and satisfies T';; =1. Hence, the original
problem can be expressed as

min trace QI
subjectto I'>~0,
Iy =1
rank ' =1,

We can obtain a relaxation to the problem by
dropping the (non-convex) rank constraint. The
relaxed problem so obtained can be solved by semi-
definite programming methods. Of course, if the
resulting solution has rank 1, we are done. Otherwise,
we can project the solution to obtain sub-optimal
approximations and the associated cost compared
with the lower bound (31) arising from the (convex)
dual problem. These kinds of strategies are described,
for example, in [68] and are capable of dealing with

problems having hundreds of decision variables at
each step.

12. CONCLUSION

This paper has discussed the problem of finite
alphabet control and estimation. This problem occurs
in a broad spectrum of applications. It is encouraging
(for control engineers) to see that their “tools” have a
valuable role to play in many diverse fields including
audio signal processing, digital communications and
power electronics. We have discussed “closed form”
solutions to the associated finite alphabet
optimization problems, which are applicable to small
constraint horizons. Moreover, we have seen that
small constraint horizons can lead to near optimal
performance when a receding horizon optimization
strategy is used. For more complex problems, semi-
definite programming relaxations can be used to
obtain bounds on solutions.
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