• Title/Summary/Keyword: Network-On-Chip

Search Result 383, Processing Time 0.022 seconds

A Design of a Co-simulator Integrates a System-on-Chip Simulator and Network Simulator for Development Environments of Prototype Network Devices (네트워크 디바이스의 프로토타입 개발 환경을 위한 시스템-온-칩 시뮬레이터와 네트워크 시뮬레이터의 통합 시뮬레이터 설계 및 구현)

  • Lee, He-Eung;Park, Soo-Jin;Gwak, Dong-Eun;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.754-766
    • /
    • 2010
  • In the wireless communication protocols, a network device is responsible for the operation of lower-layers. The network device consists of hardware and software modules, so it can be designed using system-on-chip simulator. The simulator design needs the support of a network simulator as well as system-on-chip simulator, because the network device interact with various higher layer communication protocols. Therefore the co-simulator can become a development environment of the network device through the combining of them. In this paper we propose a co-simulator combining these two simulators. The proposed co-simulator does not degrade performance due to integrations. Also, it is easy to integrate them because the implementation of the kernel is independent.

A Network Storage LSI Suitable for Home Network

  • Lim, Han-Kyu;Han, Ji-Ho;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.258-262
    • /
    • 2004
  • Storage over Ethernet (SoE) is a network storage architecture that allows direct attachment of existing ATA/ATAPI devices to Ethernet without a separate server. Unlike SAN, no server computer intervenes between the storage and the client hosts. We propose a SoE disk controller (SoEDC) amenable to low-cost, single-chip implementation that processes a simplified L3/L4 protocol and converts commands between Ethernet and ATA/ATAPI, while the rest of the complex tasks are performed by the remote hosts. Thanks to simple architecture and protocol, the SoEDC implemented on a single $4mm{\times}4mm$ chip in 0.18um CMOS technology achieves maximum throughput of 55MB/s on Gigabit Ethernet, which is comparable to that of a high-performance disk storage locally attached to a host computer.

Implementation and Experiment of Neural Network Controllers for Intelligent Control System Education

  • Lee, Geun-Hyeong;Noh, Jin-Seok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • This paper presents the implementation of an educational kit for intelligent system control education. Neural network control algorithms are presented and control hardware is embedded to control the inverted pendulum system. The RBF network and the MLP network are implemented and embedded on the DSP 2812 chip and other necessary functions are embedded on an FPGA chip. Experimental studies are conducted to compare performances of two neural control methods. The intelligent control educational kit(ICEK) is implemented with the inverted pendulum system whose movements of the cart is limited by space. Experimental results show that the neural controllers can manage to control both the angle and the position of the inverted pendulum systems within a limited distance. Performances of the RCT and the FEL control method are compared as well.

Converting Interfaces on Application-specific Network-on-chip

  • Han, Kyuseung;Lee, Jae-Jin;Lee, Woojoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • As mobile systems are performing various functionality in the IoT (Internet of Things) era, network-on-chip (NoC) plays a pivotal role to support communication between the tens and in the future potentially hundreds of interacting modules in system-on-chips (SoCs). Owing to intensive research efforts more than a decade, NoCs are now widely adopted in various SoC designs. Especially, studies on application-specific NoCs (ASNoCs) that consider the heterogeneous nature of modern SoCs contribute a significant share to use of NoCs in actual SoCs, i.e., ASNoC connects non-uniform processing units, memory, and other intellectual properties (IPs) using flexible router positions and communication paths. Although it is not difficult to find the prior works on ASNoC synthesis and optimization, little research has addressed the issues how to convert different protocols and data widths to make a NoC compatible with various IPs. Thus, in this paper, we address important issues on ASNoC implementation to support and convert multiple interfaces. Based on the in-depth discussions, we finally introduce our FPGA-proven full-custom ASNoC.

Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network (신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링)

  • Lee, Sin-Young;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

A software-controlled bandwidth allocation scheme for multiple router on-chip-networks

  • Bui, Phan-Duy;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1203-1207
    • /
    • 2019
  • As the number of IP cores has been increasing in a System-on-Chip (SoC), multiple routers are included in on-chip-networks. Each router has its own arbitration policy and it is difficult to obtain a desired arbitration result by combining multiple routers. Allocating desired bandwidths to the ports across the routers is more difficult. In this paper, a guaranteed bandwidth allocation scheme using an IP-level QoS control is proposed to overcome the limitations of existing local arbitration policies. Each IP can control the priority of a packet depending on the data communication requirement within the allocated bandwidth. The experimental results show that the proposed mechanism guarantees for IPs to utilize the allocated bandwidth in multiple router on-chip-networks. The maximum error rate of bandwidth allocation of the proposed scheme is only 1.9%.

A bio-sensor SoC Platform Using Carbon Nanotube Sensor Arrays (CNT 배열을 이용한 bio-sensor SoC 설계)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.8-14
    • /
    • 2008
  • A fully CMOS-integrated carbon nanotube (CNT) sensor array is proposed. After the sensor chip is fabricated in commercial CMOS process, the CNTs network is formed on the top of the fabricated sensor chip through the room-temperature post-CMOS processes. When the resistance of the CNT is changed by the chemical reaction, the read-out circuit in the chip measures the charging time of the $R_{CNT}$-Capacitor. finally the information of measured frequency is converted to a digital code. The CMOS sensor chip was fabricated by standard 0.18um technology and the size of the $8{\times}8$ sensor array is $2mm{\times}2mn$. We have carried out an experiment detecting the biochemical material, glutamate, using this sensor chip. From the experiment the CMOS sensor chip shows the feasibility of sensor for the simultaneous detection of the various target materials.

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

  • Cho, Je-Kwang;Nah, Kyung-Suc;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.83-87
    • /
    • 2004
  • Phase noise performance and current consumption of Radio Frequency (RF) Voltage-Controlled Oscillator (VCO) are largely dependent on the Quality (Q) factor of inductor-capacitor (LC) tank. Because the Q-factor of LC tank is determined by on-chip spiral inductor, we designed, analyzed, and modeled on-chip differential inductor to enhance differential Q-factor, reduce current consumption and save silicon area. The simulated inductance is 3.3 nH and Q-factor is 15 at 2 GHz. Self-resonance frequency is as high as 13 GHz. To verify its use to RF applications, we designed 2 GHz differential LC VCO. The measurement result of phase noise is -112 dBc/Hz at an offset frequency of 100 kHz from a 2GHz carrier frequency. Tuning range is about 500 MHz (25%), and current consumption varies from 5mA to 8.4 mA using bias control technique. Implemented in $0.35-{\mu}m$ SiGe BiCMOS technology, the VCO occupies $400\;um{\times}800\;um$ of silicon area.

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

Novel Extraction Method for Unknown Chip PDN Using De-Embedding Technique (De-Embedding 기술을 이용한 IC 내부의 전원분배망 추출에 관한 연구)

  • Kim, Jongmin;Lee, In-Woo;Kim, Sungjun;Kim, So-Young;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.633-643
    • /
    • 2013
  • GDS format files, as well as layout of the chip are noticeably needed so as to analyze the PDN (Power Delivery Network) inside of IC; however, commercial IC in the market has not supported design information which is layout of IC. Within this, in terms of IC having on-chip PDN, characteristic of inside PDN of the chip is a core parameter to predict generated noise from power/ground planes. Consequently, there is a need to scrutinize extraction method for unknown PDN of the chip in this paper. To extract PDN of the chip without IC circuit information, the de-embedding test vehicle is fabricated based on IEC62014-3. Further more, the extracted inside PDN of chip from de-embedding technique adopts the Co-simulation model which composes PCB, QFN (Quad-FlatNo-leads) Package, and Chip for the PDN, applied Co-simulation model well corresponds with impedance from measured S-parameters up to 4 GHz at common measured and simulated points.