• Title/Summary/Keyword: Network mapping

Search Result 680, Processing Time 0.031 seconds

Reconstruction of wind speed fields in mountainous areas using a full convolutional neural network

  • Ruifang Shen;Bo Li;Ke Li;Bowen Yan;Yuanzhao Zhang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.231-244
    • /
    • 2024
  • As wind farms expand into low wind speed areas, an increasing number are being established in mountainous regions. To fully utilize wind energy resources, it is essential to understand the details of mountain flow fields. Reconstructing the wind speed field in complex terrain is crucial for planning, designing, operation of wind farms, which impacts the wind farm's profits throughout its life cycle. Currently, wind speed reconstruction is primarily achieved through physical and machine learning methods. However, physical methods often require significant computational costs. Therefore, we propose a Full Convolutional Neural Network (FCNN)-based reconstruction method for mountain wind velocity fields to evaluate wind resources more accurately and efficiently. This method establishes the mapping relation between terrain, wind angle, height, and corresponding velocity fields of three velocity components within a specific terrain range. Guided by this mapping relation, wind velocity fields of three components at different terrains, wind angles, and heights can be generated. The effectiveness of this method was demonstrated by reconstructing the wind speed field of complex terrain in Beijing.

Global Status of Korea's Media Firms and Their Future Strategies (한국 미디어 기업의 글로벌 위상과 미래 전략)

  • Kim, Dae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.174-186
    • /
    • 2011
  • This research addresses global status of Korean media firms and their future directions. Mapping of major international media firms all over the world is used in order to explain global status fully. In the four categories that classified media firms using Forbes Global 2000 mapping, all Korean media firms are included in the fourth group, which is the weakest in terms of global competitiveness. Therefore, it is essential to trace appropriate global strategy from the media industry value chain that has competence. This paper finds out that Korea has advantage in the contents, terminal, and next generation networks. That means alliance strategies of contents-terminal-next generation network have advantage to evolve into global media firms. Moreover, Korean media companies should adopt selection and concentration strategy in terms of geographical expansion. As Korea's broadcasting and game contents are already popular in Asian and Latin American regions, they would better to enter the emerging markets. In so doing, terrestrial broadcasters and game service providers should lead the way.

Predicting Method of Rosidual Stress Using Artificial Neural Network In $CO_2$ Are Weldling (인공신경망을 이용한 탄산가스 아크용접의 잔류응력 예측)

  • 조용준;이세현;엄기원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.482-487
    • /
    • 1993
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO $_{2}$ Arc Welding using the finite element method. The validity of the above results is demonstrated by experimental elastic stress relief method which is called Holl Drilling Method. The first part of numarical analysis performs a three-dimensional transient heat transfer anslysis, and the second part then uses results of the first part and performs a three-dimensional transient thermo-clasto-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method were used to train a backpropagation neural network to predict residual stress. Architecturally, the finite element method were used to train a backpropagation voltage and the current, a hidden layer to accommodate failure mechanism mapping, and an output layer for residual stress. The trained network was then applied to the prediction of residual stress in the four specimens. The results of predicted residual stress have been very encouraging.

  • PDF

Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper suggests the use of wavelet multiresolution analysis (WMRA) and neural network for generation of artificial earthquake accelerograms from target spectrum. This procedure uses the learning capabilities of radial basis function (RBF) neural network to expand the knowledge of the inverse mapping from response spectrum to earthquake accelerogram. In the first step, WMRA is used to decompose earthquake accelerograms to several levels that each level covers a special range of frequencies, and then for every level a RBF neural network is trained to learn to relate the response spectrum to wavelet coefficients. Finally the generated accelerogram using inverse discrete wavelet transform is obtained. An example is presented to demonstrate the effectiveness of the method.

Cyclic Vector Multiplication Algorithm Based on a Special Class of Gauss Period Normal Basis

  • Kato, Hidehiro;Nogami, Yasuyuki;Yoshida, Tomoki;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • This paper proposes a multiplication algorithm for $F_{p^m}$, which can be efficiently applied to many pairs of characteristic p and extension degree m except for the case that 8p divides m(p-1). It uses a special class of type- Gauss period normal bases. This algorithm has several advantages: it is easily parallelized; Frobenius mapping is easily carried out since its basis is a normal basis; its calculation cost is clearly given; and it is sufficiently practical and useful when parameters k and m are small.

  • PDF

Noise reduction system using time-delay neural network (시간지연 신경회로망을 이용한 잡음제거 시스템)

  • Choi Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.121-128
    • /
    • 2005
  • On the research field for speech signal, neural network mainly uses for the category classification in speech recognition and applies to signal processing. Accordingly, this paper proposes a noise reduction system using a time-delay neural network, which implements the mapping from the space of speech signal degraded by noise to the space of clean speech signal. It is confirmed that this method is effective for speech degraded not only by white noise but also by colored noise using the noise reduction system, which restores the amplitude component of fast Fourier transform.

Prediction of the Bead Width Using an Artificial Neural Network (신경회로망을 이용한 비드폭 예측)

  • 김일수;손준식;박창언;하용훈;성백섭
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor information about weld characteristics and process parameters as well; as t modify those parameters to hold weld. The objectives of this paper are to realize the mapping characteristics of bead width through the neural network and multiple regression method as well as to select the most accurate model in order to control the weld quality(bead width0. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

  • PDF

A Dynamically Reconfiguring Backpropagation Neural Network and Its Application to the Inverse Kinematic Solution of Robot Manipulators (동적 변화구조의 역전달 신경회로와 로보트의 역 기구학 해구현에의 응용)

  • 오세영;송재명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.985-996
    • /
    • 1990
  • An inverse kinematic solution of a robot manipulator using multilayer perceptrons is proposed. Neural networks allow the solution of some complex nonlinear equations such as the inverse kinematics of a robot manipulator without the need for its model. However, the back-propagation (BP) learning rule for multilayer perceptrons has the major limitation of being too slow in learning to be practical. In this paper, a new algorithm named Dynamically Reconfiguring BP is proposed to improve its learning speed. It uses a modified version of Kohonen's Self-Organizing Feature Map (SOFM) to partition the input space and for each input point, select a subset of the hidden processing elements or neurons. A subset of the original network results from these selected neuron which learns the desired mapping for this small input region. It is this selective property that accelerates convergence as well as enhances resolution. This network was used to learn the parity function and further, to solve the inverse kinematic problem of a robot manipulator. The results demonstrate faster learning than the BP network.

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

The Automatic Topology Construction of The Neural Network using the Fuzzy Rule (퍼지규칙을 이용한 신경회로망의 자동 구성)

  • 이현관;이정훈;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.766-776
    • /
    • 2001
  • In the constructing of the multi layer neural network, the network topology is often chosen arbitrarily for different applications, and the optimum topology of the network is determined by the long processing of the trial and error. In this paper, we propose the automatic topology construction using the fuzzy rule that optimizes the neurons of hidden layer, and prune the weights connecting the hidden layer and the output layer during the training process. The simulation of pattern recognition, and the experiment of the mapping of the inverted pendulum showed the effectiveness of the proposed method.

  • PDF