The Automatic Topology Construction of The Neural Network using the Fuzzy Rule

퍼지규칙을 이용한 신경회로망의 자동 구성

  • 이현관 (호남대학교 인터넷프로그램과) ;
  • 이정훈 (호서전산전문학교 정보통신과) ;
  • 엄기환 (동국대학교 전자공학과)
  • Published : 2001.07.01

Abstract

In the constructing of the multi layer neural network, the network topology is often chosen arbitrarily for different applications, and the optimum topology of the network is determined by the long processing of the trial and error. In this paper, we propose the automatic topology construction using the fuzzy rule that optimizes the neurons of hidden layer, and prune the weights connecting the hidden layer and the output layer during the training process. The simulation of pattern recognition, and the experiment of the mapping of the inverted pendulum showed the effectiveness of the proposed method.

다층 신경회로망의 모델의 구성은 적용분야에 따라서 임의로 선택되어지고, 최적의 모델 구 성은 긴 시간에 걸친 시행착오를 통하여 결정된다. 본 논문에서는 다층 신경회로망 모델의 은닉층 뉴런 수를 학습 과정에서 퍼지 규칙을 이용하여 최적화하는 방식을 제안하였다. 임의의 패턴 문제와 도립진자의 멥핑에 적용하여 제안한 알고리즘의 유용성을 비교 검토하였다.

Keywords