• Title/Summary/Keyword: Network clustering

Search Result 1,269, Processing Time 0.023 seconds

UMLS Semantic Network Automatic Clustering Method using Structural Similarity (구조적 유사성을 이용한 UMLS 의미망 군집 방법)

  • 지영신;전혜경;정헌만;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.223-226
    • /
    • 2003
  • Because UMLS semantic network is bulky and complex, user hard to understand and has shortcoming that can not express all semantic network on screen. To solve this problem, rules to dismember semantic network efficiently are introduction. but there is shortcoming that this should classifies manually applying rule whenever UMLS semantic network is modified. Suggest automatic clustering method of UMLS semantic network that use genetic algorithm to solve this problem. Proposed method uses Linked semantic relationship between each semantic type and semantic network does clustering by structurally similar semantic type linkages. To estimate the performance of suggested method, we compared it with result of clustering method by rule.

  • PDF

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

A Dynamic Clustering Mechanism Considering Energy Efficiency in the Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성을 고려한 동적 클러스터링 기법)

  • Kim, Hwan;Ahn, Sanghyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.199-202
    • /
    • 2013
  • In the cluster mechanism of the wireless sensor network, the network lifetime is affected by how cluster heads are selected. One of the representative clustering mechanisms, the low-energy adaptive clustering hierarchy (LEACH), selects cluster heads periodically, resulting in high energy consumption in cluster reconstruction. On the other hand, the adaptive clustering algorithm via waiting timer (ACAWT) proposes a non-periodic re-clustering mechanism that reconstructs clusters if the remaining energy level of a cluster head reaches a given threshold. In this paper, we propose a re-clustering mechanism that uses multiple remaining node energy levels and does re-clustering when the remaining energy level of a cluster head reaches one level lower. Also, in determining cluster heads, both of the number of neighbor nodes and the remaining energy level are considered so that cluster heads can be more evenly placed. From the simulations based on the Qualnet simulator, we validate that our proposed mechanism outperforms ACAWT in terms of the network lifetime.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF

Classification of network packets using hierarchical clustering (Hierarchical Clustering을 이용한 네트워크 패킷의 분류)

  • Yeo, Insung;Hai, Quan Tran;Hwang, Seong Oun
    • Journal of Internet of Things and Convergence
    • /
    • v.3 no.1
    • /
    • pp.9-11
    • /
    • 2017
  • Recently, with the widespread use of the Internet and mobile devices, the number of attacks by hackers using the network is increasing. When connecting a network, packets are exchanged and communicated, which includes various information. We analyze the information of these packets using hierarchical clustering analysis and classify normal and abnormal packets to detect attacks. With this analysis method, it will be possible to detect attacks by analyzing new packets.

The transmission Network clustering using a fuzzy entropy function (퍼지 엔트로피 함수를 이용한 송전 네트워크 클러스터링)

  • Jang, Se-Hwan;Kim, Jin-Ho;Lee, Sang-Hyuk;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.225-227
    • /
    • 2006
  • The transmission network clustering using a fuzzy entropy function are proposed in this paper. We can define a similarity measure through a fuzzy entropy. All node in the transmission network system has its own values indicating the physical characteristics of that system and the similarity measure in this paper is defined through the system-wide characteristic values at each node. However, to tackle the geometric mis-clustering problem, that is, to avoid the clustering of geometrically distant locations with similar measures, the locational informations are properly considered and incorporated in the proposed similarity measure. In this paper, a new regional clustering measure for the transmission network system is proposed and proved. The proposed measure is verified through IEEE 39 bus system.

  • PDF

A Clustering Method Considering the Threshold of Energy Consumption Model in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 소모 모델의 임계값을 고려한 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3950-3957
    • /
    • 2010
  • Wireless sensor network is composed of sensor node with limited sources, and to maintain and repair is vexatious once made up. Accordingly it is important matter to maximize the network lifetime by minimizing the energy consumption in wireless sensor network, and utilizing the limited sources efficiently. In this paper, I propose a technique arranging the cluster number with efficiency in clustering method to optimize the energy consumption. The energy usage needed for wireless transmission varies in distance(threshold). This technique reduces the energy consumption considering the threshold when arranging the cluster number. I verify that the clustering method organized through the valid processes outperform the LEACH(Low-Energy Adaptive Clustering Hierarchy) in total energy consumption.

The Clustering Scheme for Load-Balancing in Mobile Ad-hoc Network (이동 애드혹 네트워크에서 로드 밸런싱을 위한 클러스터링 기법)

  • Lim, Won-Taek;Kim, Gu-Su;Kim, Moon-Jeong;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.757-766
    • /
    • 2006
  • Mobile Ad-hoc Network(MANET) is an autonomous network consisted of mobile hosts. A considerable number of studies have been conducted on the MANET with studies of ubiquitous computing. Several studies have been made on the clustering schemes which manage network hierarchically to Improve flat architecture of MANET. But the conventional schemes have the lack of multi-hop clustering and load balancing. This paper proposes a clustering scheme to support multi-hop clustering and to consider load balancing between cluster heads. We define the split of clusters and states of cluster, and propose join, merge, divide, and election of cluster head schemes for load balancing of between cluster heads

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.