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Abstract 
 

For an energy harvesting sensor network, when the network lifetime is not the only primary 
goal, maximizing the network performance under environmental energy harvesting becomes a 
more critical issue. However, clustering protocols that aim at providing maximum information 
throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor 
Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data 
transmission in the whole network. Based on a long short-term memory (LSTM) energy 
predictor and node energy consumption and supplement models, an uneven clustering 
protocol is proposed where the cluster head selection and cluster size control are thoroughly 
designed for this purpose. Simulations and results verify that the proposed scheme can 
outperform some classic schemes by having more data packets received by the cluster heads 
(CHs) and the base station (BS) under these energy constraints. The outcomes of this paper 
also provide some insights for choosing clustering routing protocols in EH-WSNs, by 
exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, 
multihop routing strategy, and energy supplementing period. 
 
 
Keywords: Wireless sensor networks; clustering; solar radiation prediction; routing 
protocols; energy balance 
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1. Introduction 

Internet of things (IoT) techniques could be widely applied in household devices and 
industrial elements by sensors. The traditional power supply of sensor nodes is usually 
batteries with a finite lifetime and may run out quickly after operating a period of time. 
Promising energy harvesting techniques provide a perpetual power supply for energy-limited 
networks, such as radio frequency energy harvesting techniques [1, 2].  Recent energy 
harvesting technologies from sources, such as solar irradiance, wind, thermoelectric, and 
piezoelectric, have made the possibility of more extensive wireless sensor networks 
applications and eliminates node dependence on battery power limit and maintenance [3, 4, 5]. 
Among these energy-harvesting sources, solar irradiance is most commonly used since it is 
reliable, predictable and has the highest power density.  Recent researches on solar energy 
harvesting systems include sensor node architectures, system and performance modeling, and 
implementations. Energy harvesting techniques offer new opportunities for protocol and 
algorithm design. In a traditional Wireless Sensor Network (WSN), the network goal is to 
extend the whole network lifetime by reducing the energy consumption of the nodes, and now 
it is shifted to consider performance metrics, for example, energy usage, scalability, and 
network throughput on Energy Harvesting Wireless Sensor Networks (EH-WSNs).  

There are still many challenges of making EH-WSNs useful in real applications, such as 
universal harvester design, energy-harvesting modeling, and network energy optimization [6]. 
Green communications utilize energy-efficient communications and networking technologies 
and protocols to minimize resource use in the whole network [7, 8]. A routing protocol is 
essential for network energy optimization in any energy-efficient WSNs. For traditional 
WSNs, extensive researches on routing protocols in traditional WSNs have been carried out. 
Three main types of routing protocols are flat routing, cluster-based routing and 
location-based routing protocol [9]. Among these protocols, clustering protocols have 
advantages in both efficiency and scalability in energy. In a typical cluster-based routing 
protocol, nodes in a WSN is clustered into several clusters. Each cluster is composed of a 
cluster head (CH) and some cluster members (CMs). CHs collect data sent by the CMs nearby 
within their clusters, then aggregate and forward these data to a possible far away base station 
(BS) which helps reduce energy consumption. But the CHs may be heavily burdened and 
nodes close to the BS have potentially more energy consumption. The objectives of the 
clustered protocols in traditional WSNs are usually to lower the energy consumption and 
extend the lifetime of sensor networks. Since the energy harvesting technology could make the 
sensor nodes acquire additional environmental energy continuously, the network lifetime is no 
more the primary goal. The ultimate goal of the EH-WSNs is to achieve energy balance by 
optimizing the energy consumption and configuration, which leads to a higher network 
throughput under long-term operation. A status known as Energy Neutral Operation (ENO) 
[10, 11, 12] in EH-WSN is the energy balance state of the whole network where the energy 
consumed by a node is always less than or equal to the energy harvested from the environment. 
However, clustering protocols that aim at providing maximum information throughput have 
not been thoroughly explored in EH-WSNs.  

Due to the difference between traditional battery-powered sensor networks and energy 
harvesting sensor networks and more exhaustive research needs for EH-WSHs, this paper 
studies clustering protocols for maximizing information gathering under the 
energy-harvesting environment. Some insights for designing clustering routing protocols in 
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EH-WSNs are also provided and factors such as uneven clustering size, number of clusters, 
multiple CHs, multihop routing strategy, and energy supplementing period are explored. The 
proposed method is suitable for situations with the needs for a very long operational duration, 
such as environmental monitoring, structural monitoring, etc. In these situations, more data 
transmission and collection will provide better references for the entire application. The main 
contributions of our work are summarized as follows. 

1) This paper proposes a carefully designed Uneven Clustering protocol for EH-WSNs 
(UCEH) where different cluster size is determined according to the distance from the 
sensor node to the BS and a harvesting energy index in an energy-harvesting 
environment. Extensive simulations demonstrate that better network performance 
referring to the network throughput and failure node percentage of the network could 
be achieved than classical clustering protocols.  

2) An energy management framework is proposed with an LSTM-based energy predictor 
which increases solar radiation prediction accuracy and then helps for energy 
utilization and achieve energy balance in the whole network.  

3) Experiments on factors such as uneven clustering size, number of clusters, multiple 
CHs in one cluster, multihop routing strategy, and energy supplementing period for a 
node are designed to give better thoughts on designing protocols in EH-WSNs. 

2. Related Work 
Clustering routing protocols of WSNs have been extensively studied in the literature. They are 
represented by the Low Energy Adaptive Clustering Hierarchy (LEACH) [13] and its 
following improved algorithms, such as Threshold Sensitive Energy Efficient Sensor Network 
(TEEN) [14], Energy Efficient Heterogeneous Cluster-based routing protocol (EEHC) [15] 
and Hybrid Energy Efficient Distributed Clustering Approach (HEED) [16]. Their main goals 
are to achieve energy balance among the whole networks. The operations of the clustering 
protocol are usually divided into three phases: the selection of CHs, the formation of clusters, 
and the transmission of data. The central part of the protocol is the CH selection algorithm 
because it determines the energy efficiency of the network. On the issue of the CH election, 
LEACH is the earliest proposed WSN clustering routing protocol, which uses random 
probability to select CHs and uniform clustering strategy and periodic CH rotation. HEED [16] 
is a multihop protocol using a fixed cluster radius and the selection of CHs in HEED depends 
mainly on the sensor residual energy and node density. LEACH with Sliding Window and 
Dynamic Number of Nodes (LEACH-SWDN) algorithm [17] generate a sliding window 
according to the initial energy of the node and the average energy of the non-CHs in this round.  
It adjusts the threshold and optimal cluster numbers accordingly. However, multihop protocols 
may lead to the “hot spot” problem in WSNs [18], i.e., the nodes nearing the BS die faster than 
nodes far from the BS. Uneven clustering algorithm could solve part of this problem. The 
Energy Efficient Uneven Clustering Algorithm (EEUC) [19] determines the uneven 
competition radius according to the distance between the nodes and the BS, so that the size of 
clusters close to the BS is smaller, saving energy for communication and transmission between 
clusters. Moreover, in the selection of the relay node, the remaining energy of the node and the 
distance from the CH to the BS are comprehensively considered.  

Although clustering methods have been studied widely in traditional WSNs, clustering 
algorithms proposed for EH-WSNs are still not adequate. Among the existing limited work, 
ENC [20] is proposed to achieve energy neutrality by creating cluster head groups (CHGs), i.e., 
several nodes in a cluster take turns to be the CH. Traditional WSNs uses residual energy as an 
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essential index, while EH-WSNs could use the energy supplementing rate for routing 
decisions. In [21], the clustering protocol considers the energy harvesting nodes to get a more 
prominent possibility to be the CH. 

Under the energy harvesting circumstances, power management systems and routing 
decisions heavily on the accuracy of environmental energy prediction models. The solar 
irradiation prediction algorithms are categorized into three major classes: statistical, stochastic, 
and machine learning based models [22]. Statistical models include the classic Exponential 
Weighted Moving Average (EWMA) [11], the Weather Conditioned Moving Average 
(WCMA) [23], and the Profile-Energy (Pro-Energy) model [24]. Other models such as 
Autoregressive Integrated Moving Average (ARIMA) and Linear Regression (LR) are also in 
this category. Stochastic models use stochastic processes, such as Markov Chains to represent 
signals. Machine learning prediction schemes include neural networks, such as Recurrent 
Neural Network (RNN) [25] and reinforcement learning [26]. Machine learning prediction 
schemes are shown to outperform the traditional models by achieving increased accuracy but 
with a more substantial computational burden [22].  

Although there are already works on maximizing network throughput in WSNs and 
EH-WSNs, most of the work is focusing on formulating the mathematical problems in these 
situations and more investigations under different protocols need to be done more thoroughly. 
The mathematical formula to get the optimal transmitting power of nodes and the algorithm 
for select the CH to maximizing the data gathering in WSNs are investigated in [27]. Under 
EH-WSNs, a mixed-integer linear programming (MILP) optimization model for maximizing 
network throughput and designing algorithms to solve the problems in the scenario is 
introduced in [28].  

3. System Model 

3.1 Overall Framework  
A typical clustered WSN as depicted in Fig. 1 has 𝑁𝑁 energy harvesting nodes randomly 
located in the sensor network field which are grouped into several clusters. The field shape is a 
square with length 𝐿𝐿 and thus the area of the field is 𝐿𝐿2  square meters. According to the 
research that the best performance is achieved when a BS is located in the center of the field 
and the worst when a BS is in the corner [29], a BS in our system model is employed in the 
middle of the WSN field.  All of the wireless sensor nodes are divided into different clusters 
periodically. Section 4 describes the details of an uneven clustering routing protocol. Each 
cluster is composed of a CH and some CMs. CHs of all the clusters collect data sent by the 
CMs within their clusters, then aggregate and forward these data to the BS. The following 
assumptions are made adhering to the existing literature [13, 19, 20] : 

• The BS could get access to an unlimited amount of energy and have strong 
computational power, and all the node sensors use solar panel devices to complement 
energy.  

• All of the sensor nodes, including the BS, are stationary and can get the localization by 
feasible techniques, such as GPS.  

• Nodes can adjust their transmission power according to the distances between nodes.   
For randomly located nodes, a clustered routing protocol needs to be carefully designed to 

achieve good performance, i.e., the maximized overall throughput and the minimum number 
of failure nodes, during a period of operation time. Due to the more complex situation in a 
harvesting energy environment, a framework of power management is designed at each sensor 
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node illustrated in Fig. 2. The power management framework relies heavily on energy 
predictor. The energy predictor is to predict the amount of energy that a sensor node can 
harvest in the next time slot. Power management of the whole network utilizes the periodical 
predicted energy information from the energy predictor, and the network information from the 
EH-WSN, such as the number of clusters, the number of alive nodes in this round. Then 
according to the current network status, the power management regulates the network 
parameters as the number of clusters and cluster sizes correspondingly which makes the better 
utilization of the energy and achieve energy neutralization in the whole network. 
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Fig. 1. Clustering protocol for EH-WSNs 
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Fig. 2. The framework of power management at each node 
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3.2 Energy Predictor 
The energy predictor is designed to provide an estimation of the energy which could be 
harvested for each node in a certain amount of time. Time series prediction in solar radiation 
refers to a sequence of numbers in which successive observations of the solar radiation are 
arranged and there is a statistical dependence on each other. As the most popular and widely 
used algorithm, the advantage of EWMA is to make full use of the solar cycle and adapt to 
seasonal changes. When the weather has been in a stable state, such as continuous sunny days 
and cloudy days, the prediction error of the algorithm is extremely small. At the same time, the 
main disadvantage of EWMA is its vulnerability to changing weather conditions. In particular, 
EWMA produces significant prediction errors when mixed on sunny and cloudy days. To 
improve the EWMA algorithm, WCMA was proposed. The dramatic error of the WCMA 
algorithm appears around time slots around sunset and sunrise which is because that the 
WCMA takes into account the preceding time slots. Due to the dramatic changes in sunshine 
conditions during sunrise and sunset, high error rates are caused. To achieve more accurate 
results, our harvesting energy predictor uses a long short-term memory (LSTM) neural 
network. The LSTM network was proposed by Hochreiter et al. in 1997 [30] which is an RNN 
architecture and suitable for time series sequence prediction. It was designed to eliminate the 
vanishing gradient problem and capture the long-term dependencies in the time series 
effectively which has been extensively applied in various fields. Fig. 3 shows the LSTM 
network structure with the embedding layer, LSTM layer, and output layer. Our LSTM 
networks use a multilayer architecture consisting of two LSTM layers and one fully connected 
layer. The Empirical Mode Decomposition (EMD) method [31] is used to decompose the time 
sequence data into a series of relatively stable component sequences before trained by LSTM 
networks. We finished experiments in LSTM, EWMA, and WCMA on the data from the US 
national solar radiation database [32] containing comprehensive solar and meteorological 
related data in more than 1000 locations of the United States. Each solar radiation historical 
data has a one-hour sample rate over a whole year period.  Fig. 4 shows the prediction results 
by EWMA, WCMA, and LSTM compared with the actual data in two consecutive days (Oct 
20 and 21) at the site of Alabama in 1999. For measuring prediction accuracy, Root Mean 
Square Error (RMSE) as the most commonly used metric is chosen to evaluate the 
performance between these prediction models in our experiments. Overall, the accuracy of 
LSTM outperforms other algorithms by 8.2-25.3%. The accuracy of energy prediction affects 
the overall performance of the sensor networks. Overestimates in prediction can lead to the 
energy depletion in some nodes and decreased the overall number of packages sent to the BS 
whereas underestimates could reduce throughput directly.  
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Fig. 4. Prediction results by WCMA, EWMA, LSTM compared with actual data 

3.3 Energy Supplement Model and Energy Consumption Model 
Energy is a limited resource for sensors in IoT, hence the supplement model and consumption 
model needs to be accurately modeled from real situations. As to the energy supplement model, 
we survey various products of solar energy harvesting sensor nodes, such as Prometheus [33], 
HydroWatch [34], Heliomote [35], Everlast [36], Sunflower [37], recently proposed DuraCap 
[38] and OpenWise [39], all of which use Harvest-Store-Use architecture. Specifically, we 
assume that the harvested energy of the sensors is stored in a supercapacitor or battery. 
Furthermore, when one day is divided into t time slots, the harvested energy supplement to 
sensors several times during a day. If 𝑠𝑠𝑠𝑠 is to represent the supplementing time, we have 
𝑠𝑠𝑠𝑠 = 𝑘𝑘 ∗ 𝑠𝑠  where 𝑘𝑘  is the supplementing sequence of the charging. 𝐸𝐸𝐻𝐻𝑛𝑛 (st) represents the 
amount of energy that can be used by a sensor 𝑛𝑛 after harvesting energy in 𝑘𝑘 time slots. 
According to the reported research [40], the average solar panel size is 8.15 inch2. The 
LSTM-based energy predictor proposed in Section 3.2 accurately estimates the solar radiation 
for the next several time slots and then 𝐸𝐸𝐻𝐻𝑛𝑛(st) could be derived accordingly. In every time slot, 
the energy management framework help efficiently assign energy through the whole network 
and make sure that the energy consumption in each node should be below the harvested energy 
plus the residual energy in this node. 

For any node, energy is consumed during transmission, reception of packets and data 
dissemination. Adopted from the model of LEACH [13], the energy consumed by a sensor to 
transmit one bit of data is defined as 𝐸𝐸𝑡𝑡 in Eq. (1). 

𝐸𝐸𝑡𝑡 = �
𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑒𝑒𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑2      𝑑𝑑 ≤ 𝑑𝑑0
𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑒𝑒𝑚𝑚𝑠𝑠 ∗ 𝑑𝑑4     𝑑𝑑 > 𝑑𝑑0

                                              (1) 

where 𝑒𝑒𝑒𝑒𝑡𝑡 is the energy consumed by the transmitter for modulation, filtering and spreading 
data. 𝑑𝑑 is the distance between the sending node and the receiving node.  When d is less than a 
specified distance 𝑑𝑑0, the free space (𝑑𝑑2) model is used, and when it is more than 𝑑𝑑0, the 
multi-path fading (𝑑𝑑4) channel model is applied.  The amplifier energy 𝑒𝑒𝑠𝑠𝑠𝑠 and 𝑒𝑒𝑚𝑚𝑠𝑠 depend on 
the transmission distance and the acceptable bit-error rate. The energy consumption model for 
receiving one bit of data is defined as 𝐸𝐸𝑟𝑟. 

𝐸𝐸𝑟𝑟 =  𝑒𝑒𝑒𝑒𝑟𝑟                                                                         (2) 

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23

So
la

r R
ad

ia
tio

n 
(W

h/
m

2 )
 

Time (hours) 
Actual EWMA WCMA LSTM



1426                                                            Ge et al.: Maximizing Information Transmission for Energy Harvesting Sensor Networks 
by an Uneven Clustering Protocol and Energy Management 

where 𝑒𝑒𝑒𝑒𝑟𝑟 is the amount of energy that a receiver needs when receiving one bit of data. 
For each CM in a cluster, the node needs to sense and transmit data to its CH. Comparing to 

transmitting data, the energy needed for sensing data could be neglected, so the energy used by 
CM is 𝐸𝐸𝐶𝐶𝐶𝐶 = 𝐸𝐸𝑡𝑡. It is assumed that the data received by a CH could be aggregated into one 
single packet due to the data correlation. So each CH consumes energy on receiving data from 
their CMs in the cluster, aggregating the data and transmitting the aggregated data to the BS as 
𝐸𝐸𝐶𝐶𝐻𝐻 = 𝐸𝐸𝑟𝑟 + 𝛼𝛼𝐸𝐸𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑡𝑡/𝛼𝛼 where 𝛼𝛼 is the aggregation rate and 𝐸𝐸𝐷𝐷𝐷𝐷 is the energy consumed by 
the CH for data aggregation. 

4. Uneven Clustering Protocol for Maximizing Information Transmission 
In a large-scale WSN, the nodes grouped into 𝐾𝐾 clusters (𝐾𝐾  > 1) can help balance the energy 
through the whole network, where the CH nodes are able to aggregate information and send 
the information to the BS. To maximize utilizing the harvested energy, an uneven clustering 
protocol which has different sizes of clusters for maximizing information transmission is 
designed and the schemes of CHs reselection and multihop routing strategies are employed in 
our protocol.    

4.1 Uneven Clustering Protocol Designed for EH-WSNs 
Assume that, a unique sensor node ID is assigned to each sensor node and the location of each 
node is known.  A node in each cluster is selected to be the head of the cluster, and each CH 
forwards the data to the BS through other intermediate CHs in a multihop path. When the 
distance from the CH to the BS is far, multihop routing is an excellent option to save energy. 
For each round, CHs are reselected according to the residual energy and predicted harvested 
energy of cluster nodes from the energy predictor. The nodes could be periodically rotated as 
the CHs, but the hot spot problem cannot be mitigated when nodes near the BS could die 
quicker. Therefore, unequal sizes of clustering are adopted to achieve better energy balance. 
Clusters close to the BS have smaller cluster sizes which comparatively consume less energy 
for processing data in the cluster.  
 

Cluster Formation Algorithm 
Initialization 
For each node 𝑆𝑆𝑖𝑖, the location (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) is known. The field area is (0,0)-(𝐿𝐿,𝐿𝐿). The coordinates 
of the BS are  (𝐿𝐿/2, 𝐿𝐿/2) and the distance 𝑑𝑑(𝑆𝑆𝑖𝑖 ,𝐵𝐵𝑆𝑆) from each node to the BS is calculated.  
Step 1. Tentative Cluster Head Selection 
At the beginning of each round, nodes are randomly selected as tentative CHs, if Rand()  ≤
 𝑝𝑝/(1 − 𝑝𝑝 × 𝑚𝑚𝑚𝑚𝑑𝑑(𝑟𝑟, 𝑟𝑟𝑚𝑚𝑟𝑟𝑛𝑛𝑑𝑑(1/𝑝𝑝)) , where 𝑝𝑝  indicates the probability of being CH and 𝑟𝑟 
indicates the number of rounds. 
Step 2. Cluster Head Competition 
For any tentative 𝐶𝐶𝐶𝐶𝑗𝑗, it determines the competition area 𝑅𝑅𝑐𝑐 as 
𝑅𝑅𝑐𝑐 = 𝑅𝑅0 × �1 − 𝑐𝑐 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑(𝑆𝑆𝑖𝑖,𝐵𝐵𝑆𝑆)

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
 � × 𝐼𝐼𝐸𝐸𝐻𝐻                                           

𝑅𝑅𝑐𝑐 guarantees that clusters closer to the BS have less competition ranges. In this competition 
range, only one CH with the highest residential energy and predicted harvesting energy in the 
next time slot becomes the final CH. 
Step 3. Cluster Formation 
All the nodes join the closest CH. 

              The process repeated when the next round starts from Step 1.  
 

Fig. 5.  Cluster formation algorithm 
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As illustrated in Fig. 5, in the initialization period of the cluster formation algorithm, the 
network is to be grouped into 𝐾𝐾 clusters. The number of cluster 𝐾𝐾 is controlled by the user 
which is explained later thoroughly in the simulation part. In this period, some sensors are 
randomly selected as the tentative CHs. First, each sensor node generates a random number 
from 0 to 1, and it then becomes the tentative CH if the number is smaller than the predefined 
probability 𝑃𝑃𝑘𝑘 defined as 𝑝𝑝/(1 − 𝑝𝑝 × 𝑚𝑚𝑚𝑚𝑑𝑑(𝑟𝑟, 𝑟𝑟𝑚𝑚𝑟𝑟𝑛𝑛𝑑𝑑(1/𝑝𝑝)) where p indicates the probability 
of being CH, 𝑟𝑟 indicates the number of rounds. In the cluster formation period of our uneven 
clustering algorithm, different competition ranges are produced according to the distance from 
the node to the BS and the harvesting energy prediction for the next time slot. The equation of 
the CH’s competition range is adopted from [19] for an unequal clustering protocol and added 
a harvesting energy adjusting index with the closer the node to the BS, the smaller the size of 
the cluster. The tentative CH’s competition range Ri is expressed in Eq. (3) as: 

𝑅𝑅𝑖𝑖 = 𝑅𝑅0 × �1 − 𝑐𝑐 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑(𝑆𝑆𝑖𝑖,𝐵𝐵𝑆𝑆)
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 � × 𝐼𝐼𝐸𝐸𝐻𝐻                                         (3) 
where 𝑅𝑅0 denotes the maximum competition radius in the network which can be estimated 
from the analysis in Section 5.2, 𝑑𝑑(𝑆𝑆𝑖𝑖 ,𝐵𝐵𝑆𝑆) denotes the distance between 𝑆𝑆𝑖𝑖 and the BS, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is 
the maximum distance of the node to the BS. The minimum competition range is close to 
𝑅𝑅0 × (1 − 𝑐𝑐). 𝑐𝑐 is a constant coefficient between 0 and 1. When 𝑐𝑐 is close to 1, the maximum 
competition range is much greater than the minimum competition range. 𝐼𝐼𝐸𝐸𝐻𝐻  is the predicted 
harvesting energy adjusting index which is between 0.5 and 1 where 𝐼𝐼𝐸𝐸𝐻𝐻 = 0.5 + 0.5 ∗ 𝐸𝐸ℎ/𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. 
If the expected solar radiation energy for next time slot (𝐸𝐸ℎ) will be the maximum amount of 
energy we can harvest (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) according to the history data, e.g., at the noon during the summer, 
𝐼𝐼𝐸𝐸𝐻𝐻  is set to be 1. In the night, the index is set to be close to 0.5. Therefore the maximum 
competition radius changes according to the harvested energy during a day. Each tentative CH 
also has knowledge of its adjacent tentative CHs. The node with maximum residual energy 
and estimated harvesting energy in the next time duration before the reselection of the CH is 
chosen as the final CH. If there is a tie, the node with the smaller ID is chosen. After the 
formation of clusters is completed, data transmission starts.  In any round, the reselection of 
any CHs happens for each predefined time period.  

4.2 Multihop Routing 
In each cluster, all the CMs collect the data and directly send them to their CHs. After the CH 
receives all the data from its CMs, the CH first aggregates the data and then sends the packets 
to the BS by a multihop path through intermediate CHs.  

Researches have been proved that a multihop routing protocol is more efficient in utilizing 
the energy more efficiently [9, 13]. To select the next hop node, if the distance of a node 𝑆𝑆𝑖𝑖 to 
the BS is less than a certain distance 𝑑𝑑0, no intermediate node is needed, and it transmits the 
data to the BS directly.  Otherwise, choosing an adjacent node 𝑆𝑆𝑗𝑗 where 𝑆𝑆𝑗𝑗 belongs to the CHs 
and 𝑑𝑑2�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗� + d2�S𝑗𝑗 , BS� < d2(S𝑖𝑖 , BS)  with the maximum residential energy. When the 
intermediate node is selected by considering factors other than distance, the harvested rate 
needs to be considered. Among all the eligible neighbors, nodes with the highest harvested 
energy are selected as the intermediate node. 

5. Simulations 

5.1 Parameter Setting 
Communication-related parameters in our approach are shown in Table 1. Under these 



1428                                                            Ge et al.: Maximizing Information Transmission for Energy Harvesting Sensor Networks 
by an Uneven Clustering Protocol and Energy Management 

settings, simulations are carried out on the Matlab platform [41] under a simplified situation. 
In these experiments, assume that it is in an ideal MAC protocol neglecting the packet loss 
error.  The network fields are 200×200 square meters and the BS is located in the middle of the 
field. The data packet size of a CM sent to CH is 4000 bits/packet and the control packet size is 
500 bits/packet. One time slot is set to be 1 hour (3600 s). The solar radiation data is retrieved 
from the US Solar Radiation Database [33] which is to be used as an estimation of the 
harvested energy in each time slot. For example, [0, 0, 0, 0, 0.00072, 0.02882, 0.11503, 
0.20562, 0.24646, 0.27146, 0.28380, 0.29236, 0.27904,  0.27127, 0.26922, 0.24033, 0.16847, 
0.07057, 0.00776, 0, 0, 0, 0, 0] is the average solar radiation (J) for each hour in one location of 
a day in the year of 2010. The harvested energy of days and nights have an obvious difference. 
Considering the harvested energy usage and hardware restriction, the charging sequence is set 
as once in every four time slots (hours). 
 

Table 1. Parameter settings 
Parameters Value 
Network field (0, 0)-(200, 200) 
Base station location     (100,100) 
Data packet size 4000 bits/packet 
Control packet size 500 bits/packet 
Initial energy 0.5 J 
Time slot           1 hour (3600 s) 
n 100-400 
eet 5×10-8 J/bit 
eer 5×10-8 J/bit 
Esp 1×10-10 J/(bit*m2) 
Emp 1.3×10-15 J/(bit*m4) 
EDA 5×10-9 J/bit 

 
According to Eq. (3) in Section 4, the competition radius of a CH varies according to the 

specified 𝑐𝑐 where 𝑅𝑅0 is set as a constant 90 meters in our experiments. The results of packages 
transmitted to the CHs under different 𝑐𝑐 with two distinct number of nodes in the field is 
plotted in Fig. 6. From Fig. 6, we can see that when 𝑐𝑐 is between 0.2-0.3, the CHs in the whole 
network receive the most number of packets. Therefore, we set 𝑐𝑐 as 0.2 in later simulations.   
 

 
Fig. 6. Packets received by the CHs with different c 

5.2 Discussion on Estimating Optimum Number of Clusters 
In our approach, the network with 𝐾𝐾  clusters could be estimated by formulating the 
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optimization problem to maximize the amount of information sent by all the CMs. As the 
number of clusters increases, the average number of CMs in each cluster will be decreased 
which lower the overall transmitted information and the burden for a CH.  So 𝐾𝐾 will be chosen 
as the smallest 𝐾𝐾 for fulfilling the harvested data.  

Here we simplify the situation by using the average value of cluster members.  Assume that 
𝐾𝐾 clusters are formed and the average number of sensors in each cluster is 𝑁𝑁/𝐾𝐾. For each 
cluster we have 𝑁𝑁/𝐾𝐾 − 1 average number of CMs, so we have: 

max (𝐾𝐾 ∗ �𝑁𝑁
𝐾𝐾
− 1� ∗ 𝐿𝐿𝑡𝑡)                                                   (4) 

 
     Subject to: 

�𝑁𝑁
𝐾𝐾
− 1� ∗ 𝐿𝐿𝑡𝑡 ∗ (𝐸𝐸𝑟𝑟 + �𝑁𝑁

𝐾𝐾
− 1� ∗ 𝐸𝐸𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑡𝑡

𝑁𝑁
𝐾𝐾−1

) ≤ 𝐸𝐸𝐻𝐻𝑛𝑛(𝑠𝑠)                             (5) 

Eq. (4) is the objective function which represents the data that could be transmitted by these 
CMs for one time slot 𝑠𝑠. 𝐿𝐿𝑡𝑡 is the amount of information that a CM transmits in a time slot 𝑠𝑠. 
For both CMs and CHs, there are the energy constraints for energy neutrality condition. Since 
for each CH, the energy required for transmitting the collected information in the cluster is 
higher than the energy required for each CM. So we only formulate the energy neutrality 
constraint for the CHs in Eq. (5) which is a well-known convex optimization problem with 
optimal points (𝐿𝐿𝑡𝑡 ,𝐾𝐾). To solve this problem, the following Lagrangian function Eq. (6) is 
formulated. 

𝐿𝐿 = 𝐾𝐾 ∗ �𝑁𝑁
𝐾𝐾
− 1� ∗ 𝐿𝐿𝑡𝑡 + 𝑣𝑣 ∗ (�𝑁𝑁

𝐾𝐾
− 1� ∗ 𝐿𝐿𝑡𝑡 ∗ �𝐸𝐸𝑟𝑟 + �𝑁𝑁

𝐾𝐾
− 1� ∗ 𝐸𝐸𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑡𝑡

𝑁𝑁
𝐾𝐾−1

� − 𝐸𝐸𝐻𝐻𝑛𝑛(𝑠𝑠))       (6) 

where 𝑣𝑣 ≥ 0 is the Lagrange Multiplier. 
Additional complement slackness condition is shown as Eq. (7). 

𝑣𝑣 ∗ ��𝑁𝑁
𝑘𝑘
− 1� ∗ 𝐿𝐿𝑡𝑡 ∗ �𝐸𝐸𝑟𝑟 + �𝑁𝑁

𝑘𝑘
− 1� ∗ 𝐸𝐸𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑡𝑡

𝑁𝑁
𝑘𝑘−1

� − 𝐸𝐸𝐻𝐻𝑛𝑛(𝑠𝑠)� = 0                  (7) 

By applying the Karush-Kuhn-Tucker condition, we have Eq. (8) and Eq. (9). 
∆L
∆𝐿𝐿𝑡𝑡

= 0                                                                              (8) 
∆L
∆K

= 0                                                                               (9) 
Through Eq. (7)- Eq. (9), we can solve 𝐿𝐿𝑡𝑡, 𝐾𝐾, and 𝑣𝑣 to get the optimal point. The 𝐿𝐿𝑡𝑡 and 𝐾𝐾 

will be the closest integer to the optimal point. For example, when the number of sensors 𝑁𝑁 in 
the field equals 100 and the range of area is 100*100 square meters, the result is shown in 
Table 2.   

 
Table 2. Optimum number of clusters 

E(J) Number of Clusters (K) 
E = 0.000005 K = 14 
E = 0.00005 K = 6 
E = 0.0005 K = 3 
E = 0.001 K = 2 

 
During the process, to calculate the energy 𝐸𝐸𝑡𝑡 by a node to transmit one bit of data, the 

distance 𝑑𝑑 from the CH to the BS and the distance from the CM to the CH need to be estimated. 
All the other parameters are constant in one specific setting. From [42], we have Eq. (10) and 
Eq. (11) which could be put into Eq. (1).  

  𝐸𝐸[𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐻𝐻2 ] = 𝐿𝐿2

2𝜋𝜋𝐾𝐾
                                                                     (10) 
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𝐸𝐸�𝑑𝑑𝑡𝑡𝑡𝑡𝐵𝐵𝑆𝑆� = 0.765 ∗ 𝐿𝐿/2                                                         (11) 
By calculating the equations, we can roughly estimate 𝐾𝐾 first under a simplified situation. 

The performance of uneven clustering depends on the value of 𝑐𝑐  and 𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎 . For each 
circular-shaped cluster having a radius of 𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎, we have Eq. (12). 

𝐾𝐾𝜋𝜋𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎2 = 𝐿𝐿2                                                                         (12) 
Suppose L equals to 200 m and n equals to 200, 𝐾𝐾 is set to be 15 and 𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎 is 29.1. If n equals 

to 100, 𝐾𝐾 is set to be 10 and 𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎 is 35.7.  

5.3 Experimental Results and Analysis 
To show that the proposed protocol can achieve better performance on maximizing the 
network information transmission, we first simulate and compare the number of packets sent 
by these different protocols respectively, i.e., the UCEH with one hop, the UCEH with 
multihop, LEACH and EEUC.  The results in Table 3 and Fig. 7 show the transmission of the 
maximum packets received by the CHs in UCEH with multihop is about 6.1%-10.5% more 
than LEACH when the number of sensors ranges from 100 to 300. When the number of nodes 
in the field increases to 400, more noticeable performance differences between these two 
protocols regarding to the packages received by CHs, which UCEH outperforms LEACH by 
33.6% in this situation. EEUC which is also an uneven clustering protocol has the similar 
performance as EEUC and the CMs in both protocols can achieve high energy utilization and 
efficiency. While referring to the number of packages received by the BS, the results in Table 
4 and Fig. 8 show the more obvious performance difference between UCEH and EEUC which 
UCEH overperforms EEUC by  9.1%-12.1%. EEUC considers hot spot problems to maximize 
the lifetime of the network over LEACH and other network protocols while our algorithm 
UCEH is focusing on maximizing data transition and tuning the parameters for this aim. It 
implies in turn that UCEH can achieve better energy balance under EH-WSNs.  
 

Table 3. Packets received by CHs in different protocols 
Number of sensors UCEH-one hop UCEH-multihop LEACH EEUC 

100 482390 499630 470743 482410 
200 1703200 1773689 1604585 1702000 
300 1805200 1893235 1773220 1850000 
400 2110023 2444627 1829254 2360770 

 

 
Fig. 7. Packets received by CHs in different protocols 
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Table 4. Packets received by the BS in different protocols 
Number of sensors UCEH-one hop UCEH-multihop LEACH EEUC 

100 39102 41700 37248 38200 
200 131933 147807 133715 131833 
300 130433 157769 147768 144166 
400 175835 183718 152437 166730 

 

 
Fig. 8. Packets received by the BS in different protocols 

 
Next, the simulation on the performance metric referring to the percentage of failure nodes 

in the network with the number of rounds is conducted under the same network configurations 
and energy budget as previously stated. If a node runs out of all the energy it contains, it will be 
shut down which is counted as a failure node. After its energy is refilled by the harvested 
source, the node could be alive and active again. Fig. 9 shows the trends of the percentage of 
failure nodes with the number of rounds under different protocols. In this one-day long (24 
hours) simulation, the reselection rate is set as 10 times per time slot and the number of overall 
rounds is 240. The energy later supplemented by solar radiation activates all the failure nodes. 
The number of failure nodes under all the protocols is recorded during the simulation. Under 
LEACH, the number of failure nodes increases which reaches 22.3% of the whole network 
running out of the energy during the first 8 time slots (80 rounds). The percentages under 
EEUC and UCEH are 14.5% and 11.0% respectively. UCEH achieves comparably less 
percentage of failure nodes than other protocols which means that it achieves better network 
energy balance and also indicates that more packets are sent to the BS. 

 

 
Fig. 9. Failure node ratio (%) under different protocols 
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Fig. 10. Packets received by CHs (energy supplementing per hour vs per 4 hours) 

 
We also compare different performance under different Energy Supplement Model. Due to 

the harvested energy usage and hardware restriction, the charging sequence is set as once in 
every 4 time slots (hours). Fig. 10 shows the result when the energy harvesting is 
supplemented every hour. The numbers of packages sent to the CH and received by the BS are 
similar with a little bit increase.  The results do not change a lot, especially when solar 
radiation is in an ordinary situation because our model has already aimed to maximize network 
throughput.  

Other than the uneven clustering, we compare one CH in each cluster with multi-CHs as in 
[20]. We set the number of CHs in each cluster as 3. One CH is selected during the formation 
of clusters in UCEH. The other two heads are the two CMs that are closest to this previously 
selected CH. These three heads take turns as the CH and no selection needs for three rounds. 
The results in Table 5 do not show much difference between UCEH with and without multiple 
CHs, which means no reselection could not help much in improving the information gathering. 
In our simulations, the reselection burden is comparatively small compared to transmitting 
data. 

 
Table 5. Comparison of packets received by CHs with one and three CHs in a cluster 

Number of sensors UCEH UCEH-3 CHs 
100 499630 498356 
200 1773689 1792342 
300 1893235 1876234 
400 2444627 2452230 

 

6. Conclusions 
In this paper, we have proposed an uneven clustering protocol for EH-WSN, where the CH 

selection and cluster size control are designed for maximizing the information transmission in 
the whole network. The outcomes of this paper can provide some insights for clustering 
routing protocol design in EH-WSN, by exploiting uneven clustering, multiple CHs, and 
multihop routing.  
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Under our proposed protocol, we analyze the optimum parameters derived simplified 
network environment settings. Empirical studies verify that the proposed scheme can 
outperform other classic schemes, i.e., LEACH and EECH, by having more balanced energy 
and more packets received by the CHs and the BS with a lower number of failed nodes. We 
also compare the environment under different solar supplementing models and compare 
different performance with different number of CHs in a cluster. Results show the 
performance does not show much difference in maximizing data transmission under the 
energy harvesting situation. 

Besides the fixed data transmission rate, the changeable data transmission rate can 
apparently improve the information throughput especially when the harvested energy is not 
always stable during a day. For our future work, we plan to extend the framework on 
automatically adjusting the network parameters by the power management to maximizing the 
information transmission, such as dynamic data transmission rate and more rigorous 
simulations will be conducted. 
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