• Title/Summary/Keyword: Network biology

Search Result 507, Processing Time 0.029 seconds

Effect of Geranti Bio-Ge Yeast, a Dried Yeast Containing Biogermanium, on the Production of Antibodies by B Cells (B 세포의 항체 생산에 대한 게란티 바이오-게르마늄 효모의 영향)

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Kim, Min-Jung;Park, So-Young;Lee, Sung-Hee;Lee, Do-Ik;Hwang, Kwang-Woo
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.86-92
    • /
    • 2006
  • Background: Germanium compounds are increased to use in nutrient foods and medicines in terms of antibiotics to microbes, anticancer, modulation of immune system and neutralizing heavy metal toxins. Geranti Bio-Ge Yeast, containing stable organic germanium and bound to the yeast protein was developed by Geranti Pharm. LTD. and the modulation effect in the immune system was examined in vivo and in vitro. Methods: The compound, Geranti Bio-Ge Yeast, was fed to female Balb/c mice (each group has 10 mice) for 4 weeks and the yeast powder and steamed red ginseng powder were used as control during the same feeding time points. During 4 weeks there was no symptom to be considered, and after 4 weeks feeding all mice were sacrificed to check the changes of related immune cells and subsidiary responses (i.e. cell counting, FACS, MTT, LDH, PFC assay). Results: In pre-post comparison, B cell population was increased in the group of Geranti Bio-Ge Yeast in a dose dependent manner (100 to 800 mg/kg). However, the population of T cell, dendritic cell and macrophage was not comparably changed in all doses. The ability of cytokine production and proliferation was almost same level as shown in control group. In contrast, PFC assay informed that the compound increase the antibody production ability when fed over 200 mg/kg implying that the increase of PFC number might be due to the increase of B cells. Conclusion: Over the entire study, we concluded that the compound, Geranti Bio-Ge Yeast has better potential in immune response in terms of B cell proliferation than that of positive control, red ginseng, and the compound can be one of the future candidates for a new supplementary source improving immune system activity.

Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine

  • Lee, Jun-Sik;Kim, Dae-Hyun;Lee, Chang-Min;Ha, Tae-Kwun;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Son, Kwang-Hee;Jung, In-Duk;Lee, Eun-Kyung;Shin, Yong-Kyoo;Ahn, Soon-Cheol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Background: Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-${\kappa}B$. Methods: The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results: DPT promoted the activation of $CD8^+$ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-${\gamma}$ production and induction of cytotoxic T lymphocyte activity. Conclusion: These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.

Monitoring Reports about Nine High Risk Insect Pests of South Korea in 2019 (2019년 한국의 고위험 해충 9종에 대한 예찰조사 보고)

  • Lee, Jieun;Lee, Hyobin;Kim, Sora;Kim, Hyojoong;Lee, Seunghwan;Hong, Ki-Jeong;Jung, Chuleui;Kim, Dong-soon;Park, Jong-Seok;Lee, Wonhoon
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.203-207
    • /
    • 2020
  • Monitoring about nine high risk insect pests, Aceria diospyri, Bactrocera dorsalis, Bactrocera minax, Bactrocera tsuneonis, Cydia pomonella, Lobesia botrana, Proeulia sp., Solenopsis invicta and Stephanitis takeyai, were carried out in seven regions from April to October in 2019. A total of 12,285 traps/visual scouting were investigated in 288 points of 87 local sites of seven regions, resulting the nine species, A. diospyri, B. dorsalis, B. minax, B. tsuneonis, C. pomonella, L. botrana, Proeulia sp., S. invicta, and S. takeyai, were not detected. This study have been carried out from 2018, and we established the nationwide monitoring system and secured a bridgehead for monitoring invasive insect pests passing the border.

Gene Discovery Analysis from Mouse Embryonic Stem Cells Based on Time Course Microarray Data

  • Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

Genetic origin identification of Siberian chipmunks (Tamias sibiricus) in pet shops of South Korea

  • Lee, Seo-Jin;Jung, Gil-A;Min, Mi-Sook;Kim, Chuel-Kyu;Lee, Hang;Kim, Chang-Bae;Lee, Mu-Yeong
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • Siberian chipmunks, Tamias sibiricus, are one of several popular companion animals found in the pet shops of South Korea. At present, however, there have been no studies done in South Korea examining their origin even though they could be potential carriers of zoonotic diseases, and are a species of concern for efficient conservation and management strategies. Sequences of the mitochondrial cytochrome b gene (1140 bp) were determined to investigate the origin of Siberian chipmunks sold in four South Korean pet shops through comparison with sequence data from animals of known locality. Nine Siberian chipmunks were collected from pet shops in South Korea, which resulted in nine haplotypes. One (AR) of these coincided with the haplotype previously described. Phylogenetic and network analyses using 53 haplotypes including 45 haplotypes from GenBank showed three phylogenetic groups in South Korea, almost concordant to locality, designated as northern, central, and southern parts as described in a previous study. Of the nine individuals examined from the pet shops, eight were clustered into the northern phylogroup but one (cgrb9153) was grouped with the southern phylogroup, implying that at least the Siberian chipmunks examined in this study did not originate from other countries. It is likely that most individuals sold in the pet shops of Seoul were caught in the wild in Gyeonggi-do and Gangwon-do, or are maternal descendants of captive-bred individuals originating from the northern part of South Korea. It is recommended that conservation and management units of Korean chipmunks should be examined in further detail.

Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor

  • Nam, Sung Min;Choi, Jong Hee;Choi, Sun-Hye;Cho, Hee-Jung;Cho, Yeon-Jin;Rhim, Hyewhon;Kim, Hyoung-Chun;Cho, Ik-Hyun;Kim, Do-Geun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.390-400
    • /
    • 2021
  • Background: We recently showed that gintonin, an active ginseng ingredient, exhibits antibrain neurodegenerative disease effects including multiple target mechanisms such as antioxidative stress and antiinflammation via the lysophosphatidic acid (LPA) receptors. Amyotrophic lateral sclerosis (ALS) is a spinal disease characterized by neurodegenerative changes in motor neurons with subsequent skeletal muscle paralysis and death. However, pathophysiological mechanisms of ALS are still elusive, and therapeutic drugs have not yet been developed. We investigate the putative alleviating effects of gintonin in ALS. Methods: The G93A-SOD1 transgenic mouse ALS model was used. Gintonin (50 or 100 mg/kg/day, p.o.) administration started from week seven. We performed histological analyses, immunoblot assays, and behavioral tests. Results: Gintonin extended mouse survival and relieved motor dysfunctions. Histological analyses of spinal cords revealed that gintonin increased the survival of motor neurons, expression of brain-derived neurotrophic factors, choline acetyltransferase, NeuN, and Nissl bodies compared with the vehicle control. Gintonin attenuated elevated spinal NAD(P) quinone oxidoreductase 1 expression and decreased oxidative stress-related ferritin, ionized calcium-binding adapter molecule 1-immunoreactive microglia, S100β-immunoreactive astrocyte, and Olig2-immunoreactive oligodendrocytes compared with the control vehicle. Interestingly, we found that the spinal LPA1 receptor level was decreased, whereas gintonin treatment restored decreased LPA1 receptor expression levels in the G93A-SOD1 transgenic mouse, thereby attenuating neurological symptoms and histological deficits. Conclusion: Gintonin-mediated symptomatic improvements of ALS might be associated with the attenuations of neuronal loss and oxidative stress via the spinal LPA1 receptor regulations. The present results suggest that the spinal LPA1 receptor is engaged in ALS, and gintonin may be useful for relieving ALS symptoms.

Effect of Luteal Morphology of Donors on the Maturation and Subsequent Development in Vitro of Bovine Immature Oocytes (소 미성숙난자의 체외성숙과 배발생에 황체의 형태가 미치는 영향)

  • Kim, B. K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2000
  • The nuclear maturation and developmental competence of immature, oocytes collected from donors at various morphology of corpus luteum (CL) and fertilized in vitro was investigated by comparing the meiotic activity and the yields of embryos. Ovaries were divided and classified into 4 groups as the following criteria : Group 1 ; ovaries showed evidence of recent ovulation (corpus hemorragicum). Group 2 ; apex of CL was red or brown. Vasculization was limited to periphery of CL. Group 3 ; apex of CL was orange or tan. Vasculization was covered over apex of CL. Group 4 ; CL was light yellow to white and firm in texture and the vascular network on the surface of CL had disappeared. Modified TCM 199 was used for maturation in vitro of immature oocytes and development was induced by using TLP-PVA as a basic medium. When oocytes collected from each group of donors had been matured for 4, 14, and 24 hours in vitro, the proportion of oocytes reaching metaphase I and metaphase II were not different among oocytes from 4 group of ovaries. Mature metaphase II stage of oocytes in each group was first observed at 14 hours, whereas completion of maturation of. oocytes in each group was at 24 hours. Luteal morphology of ovaries had little effect on the proportion of embryos reached 2 cells and 8 cell stage. However, the proportion of embryos cleaved to morula and blastocyst stage was significantly higher in the oocytes obtained from group 1 and 3 than in the oocytes from group 2 and 4 (p<0.05). This data suggest that reproductive status of the donor significantly influence the yield of in vitro embryos.

  • PDF

SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma

  • Yuan Shao;Wanli Ren;Hao Dai;Fangli Yang;Xiang Li;Shaoqiang Zhang;Junsong Liu;Xiaobao Yao;Qian Zhao;Xin Sun;Zhiwei Zheng;Chongwen Xu
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.360-373
    • /
    • 2023
  • Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.

CD5 Expression Dynamically Changes During the Differentiation of Human CD8+ T Cells Predicting Clinical Response to Immunotherapy

  • Young Ju Kim;Kyung Na Rho;Saei Jeong;Gil-Woo Lee;Hee-Ok Kim;Hyun-Ju Cho;Woo Kyun Bae;In-Jae Oh;Sung-Woo Lee;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2023
  • Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.