DOI QR코드

DOI QR Code

SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma

  • Yuan Shao (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Wanli Ren (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Hao Dai (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Fangli Yang (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Xiang Li (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Shaoqiang Zhang (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Junsong Liu (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Xiaobao Yao (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Qian Zhao (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Xin Sun (Department of Thoracic Surgery, The First Affiliated Hospital of Xi'An Jiaotong University) ;
  • Zhiwei Zheng (The Third Ward of General Surgery Department, Rizhao People's Hospital) ;
  • Chongwen Xu (Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'An Jiaotong University)
  • Received : 2021.09.22
  • Accepted : 2022.03.31
  • Published : 2023.06.30

Abstract

Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.

Keywords

Acknowledgement

This work was supported by grants from the institutional Foundation of the First Affiliated Hospital of Xi'An Jiaotong University (No. 2019ZYTS-04 and No. 2019ZYTS-13), Xi'An Science and Technology Project (No. 2019114613YX-001SF04(5)), Clinical Research Center for Thyroid Diseases of Shaanxi Province (No. 2017LCZX-03), the Clinical Research Award of the First Affiliated Hospital of Xi'An Jiaotong University (XJTU1AF-CRF-2020-020), The Basic Natural Science Research Program of Shaanxi Province (2021JQ-386 and 2021JQ-405), the Thyroid Research Project of Young and Middle-aged Physicians of Beijing Bethune Charitable Foundation (BQE-JZX-202103), the Key Research and Development Program of Shaanxi Province (2022SF-159) and the National Natural Science Foundation of China (No. 82103568).

References

  1. Arias, E., Koga, H., Diaz, A., Mocholi, E., Patel, B., and Cuervo, A.M. (2015). Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 59, 270-284. https://doi.org/10.1016/j.molcel.2015.05.030
  2. Aschebrook-Kilfoy, B., Ward, M.H., Sabra, M.M., and Devesa, S.S. (2011). Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid 21, 125-134. https://doi.org/10.1089/thy.2010.0021
  3. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274. https://doi.org/10.1016/S0092-8674(00)80098-7
  4. Bochis, O.V., Irimie, A., Pichler, M., and Berindan-Neagoe, I. (2015). The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer. J. Gastrointestin. Liver Dis. 24, 225-234. https://doi.org/10.15403/jgld.2014.1121.242.skp2
  5. Bretones, G., Acosta, J.C., Caraballo, J.M., Ferrandiz, N., Gomez-Casares, M.T., Albajar, M., Blanco, R., Ruiz, P., Hung, W.C., Albero, M.P., et al. (2011). SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27KIP1 through SKP2 in human leukemia cells. J. Biol. Chem. 286, 9815-9825. https://doi.org/10.1074/jbc.M110.165977
  6. Chan, C.H., Lee, S.W., Wang, J., and Lin, H.K. (2010). Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal 10, 1001-1015. https://doi.org/10.1100/tsw.2010.89
  7. Chan, C.H., Li, C.F., Yang, W.L., Gao, Y., Lee, S.W., Feng, Z., Huang, H.Y., Tsai, K.K.C., Flores, L.G., Shao, Y., et al. (2012). The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098-1111. https://doi.org/10.1016/j.cell.2012.02.065
  8. Chen, M., Pratt, C.P., Zeeman, M.E., Schultz, N., Taylor, B.S., O'Neill, A., Castillo-Martin, M., Nowak, D.G., Naguib, A., Grace, D.M., et al. (2011). Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 20, 173-186. https://doi.org/10.1016/j.ccr.2011.07.013
  9. Chiappetta, G., De Marco, C., Quintiero, A., Califano, D., Gherardi, S., Malanga, D., Scrima, M., Montero-Conde, C., Cito, L., Monaco, M., et al. (2007). Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr. Relat. Cancer 14, 405-420. https://doi.org/10.1677/ERC-06-0030
  10. Cho, B.Y., Choi, H.S., Park, Y.J., Lim, J.A., Ahn, H.Y., Lee, E.K., Kim, K.W., Yi, K.H., Chung, J.K., Youn, Y.K., et al. (2013). Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid 23, 797-804. https://doi.org/10.1089/thy.2012.0329
  11. Clement, E., Inuzuka, H., Nihira, N.T., Wei, W., and Toker, A. (2018). Skp2- dependent reactivation of AKT drives resistance to PI3K inhibitors. Sci. Signal. 11, eaao3810.
  12. Craig, K.L. and Tyers, M. (1999). The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72, 299-328. https://doi.org/10.1016/S0079-6107(99)00010-3
  13. Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435-467. https://doi.org/10.1146/annurev.cellbio.15.1.435
  14. Dong, L., Jin, L., Tseng, H.Y., Wang, C.Y., Wilmott, J.S., Yosufi, B., Yan, X.G., Jiang, C.C., Scolyer, R.A., Zhang, X.D., et al (2014). Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 33, 4756-4766. https://doi.org/10.1038/onc.2013.420
  15. Elisei, R., Molinaro, E., Agate, L., Bottici, V., Masserini, L., Ceccarelli, C., Lippi, F., Grasso, L., Basolo, F., Bevilacqua, G., et al. (2010). Are the clinical and pathological features of differentiated thyroid carcinoma really changed over the last 35 years? Study on 4187 patients from a single Italian institution to answer this question. J. Clin. Endocrinol. Metab. 95, 1516-1527. https://doi.org/10.1210/jc.2009-1536
  16. Fang, F.M., Chien, C.Y., Li, C.F., Shiu, W.Y., Chen, C.H., and Huang, H.Y. (2009). Effect of S-phase kinase-associated protein 2 expression on distant metastasis and survival in nasopharyngeal carcinoma patients. Int. J. Radiat. Oncol. Biol. Phys. 73, 202-207. https://doi.org/10.1016/j.ijrobp.2008.04.008
  17. Gao, D., Inuzuka, H., Tseng, A., Chin, R.Y., Toker, A., and Wei, W. (2009a). Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol. 11, 397-408. https://doi.org/10.1038/ncb1847
  18. Gassen, N.C., Niemeyer, D., Muth, D., Corman, V.M., Martinelli, S., Gassen, A., Hafner, K., Papies, J., Mosbauer, K., Zellner, A., et al. (2019). SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun. 10, 5770.
  19. Grogan, R.H., Kaplan, S.P., Cao, H., Weiss, R.E., Degroot, L.J., Simon, C.A., Embia, O.M.A., Angelos, P., Kaplan, E.L., and Schechter, R.B. (2013). A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 154, 1436-1447. https://doi.org/10.1016/j.surg.2013.07.008
  20. He, J., Zhou, M., Li, X., Gu, S., Cao, Y., Xing, T., Chen, W., Chu, C., Gu, F., Zhou, J., et al. (2020). SLC34A2 simultaneously promotes papillary thyroid carcinoma growth and invasion through distinct mechanisms. Oncogene 39, 2658-2675. https://doi.org/10.1038/s41388-020-1181-z
  21. Huang, H., Regan, K.M., Wang, F., Wang, D., Smith, D.I., van Deursen, J.M.A., and Tindall, D.J. (2005a). Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl. Acad. Sci. U. S. A. 102, 1649-1654. https://doi.org/10.1073/pnas.0406789102
  22. Kakudo, K., Tang, W., Ito, Y., Mori, I., Nakamura, Y., and Miyauchi, A. (2004). Papillary carcinoma of the thyroid in Japan: subclassification of common type and identification of low risk group. J. Clin. Pathol. 57, 1041-1046. https://doi.org/10.1136/jcp.2004.017889
  23. Kim, S.Y., Herbst, A., Tworkowski, K.A., Salghetti, S.E., and Tansey, W.P. (2003). Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177-1188. https://doi.org/10.1016/S1097-2765(03)00173-4
  24. Lee, S.W., Li, C.F., Jin, G., Cai, Z., Han, F., Chan, C.H., Yang, W.L., Li, B.K., Rezaeian, A.H., Li, H.Y., et al. (2015). Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol. Cell 57, 1022-1033. https://doi.org/10.1016/j.molcel.2015.01.015
  25. Li, C., Du, L., Ren, Y., Liu, X., Jiao, Q., Cui, D., Wen, M., Wang, C., Wei, G., Wang, Y., et al. (2019). SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J. Exp. Clin. Cancer Res. 38, 76.
  26. Li, F., Dong, X., Lin, P., and Jiang, J. (2018). Regulation of Akt/FoxO3a/ Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells. Int. J. Mol. Sci. 19, 327.
  27. Li, X., Liu, J., and Gao, T. (2009). β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29, 6192-6205. https://doi.org/10.1128/MCB.00681-09
  28. Li, X., Yang, H., Liu, J., Schmidt, M.D., and Gao, T. (2011). Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep. 12, 818-824. https://doi.org/10.1038/embor.2011.106
  29. Lin, H.K., Chen, Z., Wang, G., Nardella, C., Lee, S.W., Chan, C.H., Yang, W.L., Wang, J., Egia, A., Nakayama, K.I., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379. https://doi.org/10.1038/nature08815
  30. Lin, H.K., Wang, G., Chen, Z., Teruya-Feldstein, J., Liu, Y., Chan, C.H., Yang, W.L., Erdjument-Bromage, H., Nakayama, K.I., Nimer, S., et al. (2009). Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat. Cell Biol. 11, 420-432. https://doi.org/10.1038/ncb1849
  31. McNally, R.J., Blakey, K., James, P.W., Gomez Pozo, B., Basta, N.O., and Hale, J. (2012). Increasing incidence of thyroid cancer in Great Britain, 1976-2005: age-period-cohort analysis. Eur. J. Epidemiol. 27, 615-622. https://doi.org/10.1007/s10654-012-9710-x
  32. Moc, C., Taylor, A.E., Chesini, G.P., Zambrano, C.M., Barlow, M.S., Zhang, X., Gustafsson, A.B., and Purcell, N.H. (2015). Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc. Res. 105, 160-170. https://doi.org/10.1093/cvr/cvu243
  33. Nakayama, K.I. and Nakayama, K. (2005). Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323-333. https://doi.org/10.1016/j.semcdb.2005.02.010
  34. Nitsche, C., Edderkaoui, M., Moore, R.M., Eibl, G., Kasahara, N., Treger, J., Grippo, P.J., Mayerle, J., Lerch, M.M., and Gukovskaya, A.S. (2012a). The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology 142, 377-387.e375. https://doi.org/10.1053/j.gastro.2011.10.026
  35. Nogueira, V., Sundararajan, D., Kwan, J.M., Peng, X.D., Sarvepalli, N., Sonenberg, N., and Hay, N. (2012). Akt-dependent Skp2 mRNA translation is required for exiting contact inhibition, oncogenesis, and adipogenesis. EMBO J. 31, 1134-1146. https://doi.org/10.1038/emboj.2011.478
  36. Pratheeshkumar, P., Siraj, A.K., Divya, S.P., Parvathareddy, S.K., Begum, R., Melosantos, R., Al-Sobhi, S.S., Al-Dawish, M., Al-Dayel, F., and Al-Kuraya, K.S. (2018). Downregulation of SKP2 in papillary thyroid cancer acts synergistically with TRAIL on inducing apoptosis via ROS. J. Clin. Endocrinol. Metab. 103, 1530-1544. https://doi.org/10.1210/jc.2017-02178
  37. Radke, S., Pirkmaier, A., and Germain, D. (2005). Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448-3458. https://doi.org/10.1038/sj.onc.1208328
  38. Rose, A.E., Wang, G., Hanniford, D., Monni, S., Tu, T., Shapiro, R.L., Berman, R.S., Pavlick, A.C., Pagano, M., Darvishian, F., et al. (2011). Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell Melanoma Res. 24, 197-206. https://doi.org/10.1111/j.1755-148X.2010.00784.x
  39. Schuler, S., Diersch, S., Hamacher, R., Schmid, R.M., Saur, D., and Schneider, G. (2011). SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int. J. Oncol. 38, 219-225.
  40. Seki, R., Okamura, T., Koga, H., Yakushiji, K., Hashiguchi, M., Yoshimoto, K., Ogata, H., Imamura, R., Nakashima, Y., Kage, M., et al. (2003). Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma. Am. J. Hematol. 73, 230-235. https://doi.org/10.1002/ajh.10379
  41. Sonoda, H., Inoue, H., Ogawa, K., Utsunomiya, T., Masuda, T.A., and Mori, M. (2006). Significance of skp2 expression in primary breast cancer. Clin. Cancer Res. 12, 1215-1220. https://doi.org/10.1158/1078-0432.CCR-05-1709
  42. von der Lehr, N., Johansson, S., Wu, S., Bahram, F., Castell, A., Cetinkaya, C., Hydbring, P., Weidung, I., Nakayama, K., Nakayama, K.I., et al. (2003). The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189-1200. https://doi.org/10.1016/S1097-2765(03)00193-X
  43. Wang, F., Chan, C.H., Chen, K., Guan, X., Lin, H.K., and Tong, Q. (2012a). Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31, 1546-1557. https://doi.org/10.1038/onc.2011.347
  44. Wang, F., Jiang, C., Sun, Q., Yan, F., Wang, L., Fu, Z., Liu, T., and Hu, F. (2015). miR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther. 8, 3021-3028. https://doi.org/10.2147/OTT.S90710
  45. Wang, Z., Gao, D., Fukushima, H., Inuzuka, H., Liu, P., Wan, L., Sarkar, F.H., and Wei, W. (2012b). Skp2: a novel potential therapeutic target for prostate cancer. Biochim. Biophys. Acta 1825, 11-17. https://doi.org/10.1016/j.bbcan.2011.09.002
  46. Wang, Z., Shu, H., Wang, Z., Li, G., Cui, J., Wu, H., Cai, S., He, W., He, Y., and Zhan, W. (2013). Loss expression of PHLPP1 correlates with lymph node metastasis and exhibits a poor prognosis in patients with gastric cancer. J. Surg. Oncol. 108, 427-432. https://doi.org/10.1002/jso.23419
  47. Yalcin, A., Clem, B.F., Imbert-Fernandez, Y., Ozcan, S.C., Peker, S., O'Neal, J., Klarer, A.C., Clem, A.L., Telang, S., and Chesney, J. (2014). 6-Phosphofructo2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 5, e1337.
  48. Yao, F., Zhou, Z., Kim, J., Hang, Q., Xiao, Z., Ton, B.N., Chang, L., Liu, N., Zeng, L., Wang, W., et al. (2018). SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat. Commun. 9, 2269.
  49. Yokoi, S., Yasui, K., Mori, M., Iizasa, T., Fujisawa, T., and Inazawa, J. (2004). Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am. J. Pathol. 165, 175-180. https://doi.org/10.1016/S0002-9440(10)63286-5
  50. Yu, H.I., Shen, H.C., Chen, S.H., Lim, Y.P., Chuang, H.H., Tai, T.S., Kung, F.P., Lu, C.H., Hou, C.Y., and Lee, Y.R. (2019a). Autophagy modulation in human thyroid cancer cells following aloperine treatment. Int. J. Mol. Sci. 20, 5315.
  51. Yu, X., Wang, R., Zhang, Y., Zhou, L., Wang, W., Liu, H., and Li, W. (2019b). Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 38, 7457-7472. https://doi.org/10.1038/s41388-019-0955-7
  52. Yu, Y., Dai, M., Lu, A., Yu, E., and Merlino, G. (2018). PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 37, 2225-2236. https://doi.org/10.1038/s41388-017-0061-7
  53. Zhang, H. (2010). Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle 9, 861-869. https://doi.org/10.4161/cc.9.5.11153
  54. Zheng, W.Q., Zheng, J.M., Ma, R., Meng, F.F., and Ni, C.R. (2005). Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70, 770-774. https://doi.org/10.1016/j.steroids.2005.04.012
  55. Zhiqiang, Z., Qinghui, Y., Yongqiang, Z., Jian, Z., Xin, Z., Haiying, M., and Yuepeng, G. (2012). USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J. Cancer Res. Clin. Oncol. 138, 1231-1238. https://doi.org/10.1007/s00432-012-1193-3