Acknowledgement
This work was supported by grants from the institutional Foundation of the First Affiliated Hospital of Xi'An Jiaotong University (No. 2019ZYTS-04 and No. 2019ZYTS-13), Xi'An Science and Technology Project (No. 2019114613YX-001SF04(5)), Clinical Research Center for Thyroid Diseases of Shaanxi Province (No. 2017LCZX-03), the Clinical Research Award of the First Affiliated Hospital of Xi'An Jiaotong University (XJTU1AF-CRF-2020-020), The Basic Natural Science Research Program of Shaanxi Province (2021JQ-386 and 2021JQ-405), the Thyroid Research Project of Young and Middle-aged Physicians of Beijing Bethune Charitable Foundation (BQE-JZX-202103), the Key Research and Development Program of Shaanxi Province (2022SF-159) and the National Natural Science Foundation of China (No. 82103568).
References
- Arias, E., Koga, H., Diaz, A., Mocholi, E., Patel, B., and Cuervo, A.M. (2015). Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 59, 270-284. https://doi.org/10.1016/j.molcel.2015.05.030
- Aschebrook-Kilfoy, B., Ward, M.H., Sabra, M.M., and Devesa, S.S. (2011). Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid 21, 125-134. https://doi.org/10.1089/thy.2010.0021
- Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274. https://doi.org/10.1016/S0092-8674(00)80098-7
- Bochis, O.V., Irimie, A., Pichler, M., and Berindan-Neagoe, I. (2015). The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer. J. Gastrointestin. Liver Dis. 24, 225-234. https://doi.org/10.15403/jgld.2014.1121.242.skp2
- Bretones, G., Acosta, J.C., Caraballo, J.M., Ferrandiz, N., Gomez-Casares, M.T., Albajar, M., Blanco, R., Ruiz, P., Hung, W.C., Albero, M.P., et al. (2011). SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27KIP1 through SKP2 in human leukemia cells. J. Biol. Chem. 286, 9815-9825. https://doi.org/10.1074/jbc.M110.165977
- Chan, C.H., Lee, S.W., Wang, J., and Lin, H.K. (2010). Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal 10, 1001-1015. https://doi.org/10.1100/tsw.2010.89
- Chan, C.H., Li, C.F., Yang, W.L., Gao, Y., Lee, S.W., Feng, Z., Huang, H.Y., Tsai, K.K.C., Flores, L.G., Shao, Y., et al. (2012). The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098-1111. https://doi.org/10.1016/j.cell.2012.02.065
- Chen, M., Pratt, C.P., Zeeman, M.E., Schultz, N., Taylor, B.S., O'Neill, A., Castillo-Martin, M., Nowak, D.G., Naguib, A., Grace, D.M., et al. (2011). Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 20, 173-186. https://doi.org/10.1016/j.ccr.2011.07.013
- Chiappetta, G., De Marco, C., Quintiero, A., Califano, D., Gherardi, S., Malanga, D., Scrima, M., Montero-Conde, C., Cito, L., Monaco, M., et al. (2007). Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr. Relat. Cancer 14, 405-420. https://doi.org/10.1677/ERC-06-0030
- Cho, B.Y., Choi, H.S., Park, Y.J., Lim, J.A., Ahn, H.Y., Lee, E.K., Kim, K.W., Yi, K.H., Chung, J.K., Youn, Y.K., et al. (2013). Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid 23, 797-804. https://doi.org/10.1089/thy.2012.0329
- Clement, E., Inuzuka, H., Nihira, N.T., Wei, W., and Toker, A. (2018). Skp2- dependent reactivation of AKT drives resistance to PI3K inhibitors. Sci. Signal. 11, eaao3810.
- Craig, K.L. and Tyers, M. (1999). The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72, 299-328. https://doi.org/10.1016/S0079-6107(99)00010-3
- Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435-467. https://doi.org/10.1146/annurev.cellbio.15.1.435
- Dong, L., Jin, L., Tseng, H.Y., Wang, C.Y., Wilmott, J.S., Yosufi, B., Yan, X.G., Jiang, C.C., Scolyer, R.A., Zhang, X.D., et al (2014). Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 33, 4756-4766. https://doi.org/10.1038/onc.2013.420
- Elisei, R., Molinaro, E., Agate, L., Bottici, V., Masserini, L., Ceccarelli, C., Lippi, F., Grasso, L., Basolo, F., Bevilacqua, G., et al. (2010). Are the clinical and pathological features of differentiated thyroid carcinoma really changed over the last 35 years? Study on 4187 patients from a single Italian institution to answer this question. J. Clin. Endocrinol. Metab. 95, 1516-1527. https://doi.org/10.1210/jc.2009-1536
- Fang, F.M., Chien, C.Y., Li, C.F., Shiu, W.Y., Chen, C.H., and Huang, H.Y. (2009). Effect of S-phase kinase-associated protein 2 expression on distant metastasis and survival in nasopharyngeal carcinoma patients. Int. J. Radiat. Oncol. Biol. Phys. 73, 202-207. https://doi.org/10.1016/j.ijrobp.2008.04.008
- Gao, D., Inuzuka, H., Tseng, A., Chin, R.Y., Toker, A., and Wei, W. (2009a). Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol. 11, 397-408. https://doi.org/10.1038/ncb1847
- Gassen, N.C., Niemeyer, D., Muth, D., Corman, V.M., Martinelli, S., Gassen, A., Hafner, K., Papies, J., Mosbauer, K., Zellner, A., et al. (2019). SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun. 10, 5770.
- Grogan, R.H., Kaplan, S.P., Cao, H., Weiss, R.E., Degroot, L.J., Simon, C.A., Embia, O.M.A., Angelos, P., Kaplan, E.L., and Schechter, R.B. (2013). A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 154, 1436-1447. https://doi.org/10.1016/j.surg.2013.07.008
- He, J., Zhou, M., Li, X., Gu, S., Cao, Y., Xing, T., Chen, W., Chu, C., Gu, F., Zhou, J., et al. (2020). SLC34A2 simultaneously promotes papillary thyroid carcinoma growth and invasion through distinct mechanisms. Oncogene 39, 2658-2675. https://doi.org/10.1038/s41388-020-1181-z
- Huang, H., Regan, K.M., Wang, F., Wang, D., Smith, D.I., van Deursen, J.M.A., and Tindall, D.J. (2005a). Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl. Acad. Sci. U. S. A. 102, 1649-1654. https://doi.org/10.1073/pnas.0406789102
- Kakudo, K., Tang, W., Ito, Y., Mori, I., Nakamura, Y., and Miyauchi, A. (2004). Papillary carcinoma of the thyroid in Japan: subclassification of common type and identification of low risk group. J. Clin. Pathol. 57, 1041-1046. https://doi.org/10.1136/jcp.2004.017889
- Kim, S.Y., Herbst, A., Tworkowski, K.A., Salghetti, S.E., and Tansey, W.P. (2003). Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177-1188. https://doi.org/10.1016/S1097-2765(03)00173-4
- Lee, S.W., Li, C.F., Jin, G., Cai, Z., Han, F., Chan, C.H., Yang, W.L., Li, B.K., Rezaeian, A.H., Li, H.Y., et al. (2015). Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol. Cell 57, 1022-1033. https://doi.org/10.1016/j.molcel.2015.01.015
- Li, C., Du, L., Ren, Y., Liu, X., Jiao, Q., Cui, D., Wen, M., Wang, C., Wei, G., Wang, Y., et al. (2019). SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J. Exp. Clin. Cancer Res. 38, 76.
- Li, F., Dong, X., Lin, P., and Jiang, J. (2018). Regulation of Akt/FoxO3a/ Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells. Int. J. Mol. Sci. 19, 327.
- Li, X., Liu, J., and Gao, T. (2009). β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29, 6192-6205. https://doi.org/10.1128/MCB.00681-09
- Li, X., Yang, H., Liu, J., Schmidt, M.D., and Gao, T. (2011). Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep. 12, 818-824. https://doi.org/10.1038/embor.2011.106
- Lin, H.K., Chen, Z., Wang, G., Nardella, C., Lee, S.W., Chan, C.H., Yang, W.L., Wang, J., Egia, A., Nakayama, K.I., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379. https://doi.org/10.1038/nature08815
- Lin, H.K., Wang, G., Chen, Z., Teruya-Feldstein, J., Liu, Y., Chan, C.H., Yang, W.L., Erdjument-Bromage, H., Nakayama, K.I., Nimer, S., et al. (2009). Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat. Cell Biol. 11, 420-432. https://doi.org/10.1038/ncb1849
- McNally, R.J., Blakey, K., James, P.W., Gomez Pozo, B., Basta, N.O., and Hale, J. (2012). Increasing incidence of thyroid cancer in Great Britain, 1976-2005: age-period-cohort analysis. Eur. J. Epidemiol. 27, 615-622. https://doi.org/10.1007/s10654-012-9710-x
- Moc, C., Taylor, A.E., Chesini, G.P., Zambrano, C.M., Barlow, M.S., Zhang, X., Gustafsson, A.B., and Purcell, N.H. (2015). Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc. Res. 105, 160-170. https://doi.org/10.1093/cvr/cvu243
- Nakayama, K.I. and Nakayama, K. (2005). Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323-333. https://doi.org/10.1016/j.semcdb.2005.02.010
- Nitsche, C., Edderkaoui, M., Moore, R.M., Eibl, G., Kasahara, N., Treger, J., Grippo, P.J., Mayerle, J., Lerch, M.M., and Gukovskaya, A.S. (2012a). The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology 142, 377-387.e375. https://doi.org/10.1053/j.gastro.2011.10.026
- Nogueira, V., Sundararajan, D., Kwan, J.M., Peng, X.D., Sarvepalli, N., Sonenberg, N., and Hay, N. (2012). Akt-dependent Skp2 mRNA translation is required for exiting contact inhibition, oncogenesis, and adipogenesis. EMBO J. 31, 1134-1146. https://doi.org/10.1038/emboj.2011.478
- Pratheeshkumar, P., Siraj, A.K., Divya, S.P., Parvathareddy, S.K., Begum, R., Melosantos, R., Al-Sobhi, S.S., Al-Dawish, M., Al-Dayel, F., and Al-Kuraya, K.S. (2018). Downregulation of SKP2 in papillary thyroid cancer acts synergistically with TRAIL on inducing apoptosis via ROS. J. Clin. Endocrinol. Metab. 103, 1530-1544. https://doi.org/10.1210/jc.2017-02178
- Radke, S., Pirkmaier, A., and Germain, D. (2005). Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448-3458. https://doi.org/10.1038/sj.onc.1208328
- Rose, A.E., Wang, G., Hanniford, D., Monni, S., Tu, T., Shapiro, R.L., Berman, R.S., Pavlick, A.C., Pagano, M., Darvishian, F., et al. (2011). Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell Melanoma Res. 24, 197-206. https://doi.org/10.1111/j.1755-148X.2010.00784.x
- Schuler, S., Diersch, S., Hamacher, R., Schmid, R.M., Saur, D., and Schneider, G. (2011). SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int. J. Oncol. 38, 219-225.
- Seki, R., Okamura, T., Koga, H., Yakushiji, K., Hashiguchi, M., Yoshimoto, K., Ogata, H., Imamura, R., Nakashima, Y., Kage, M., et al. (2003). Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma. Am. J. Hematol. 73, 230-235. https://doi.org/10.1002/ajh.10379
- Sonoda, H., Inoue, H., Ogawa, K., Utsunomiya, T., Masuda, T.A., and Mori, M. (2006). Significance of skp2 expression in primary breast cancer. Clin. Cancer Res. 12, 1215-1220. https://doi.org/10.1158/1078-0432.CCR-05-1709
- von der Lehr, N., Johansson, S., Wu, S., Bahram, F., Castell, A., Cetinkaya, C., Hydbring, P., Weidung, I., Nakayama, K., Nakayama, K.I., et al. (2003). The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189-1200. https://doi.org/10.1016/S1097-2765(03)00193-X
- Wang, F., Chan, C.H., Chen, K., Guan, X., Lin, H.K., and Tong, Q. (2012a). Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31, 1546-1557. https://doi.org/10.1038/onc.2011.347
- Wang, F., Jiang, C., Sun, Q., Yan, F., Wang, L., Fu, Z., Liu, T., and Hu, F. (2015). miR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther. 8, 3021-3028. https://doi.org/10.2147/OTT.S90710
- Wang, Z., Gao, D., Fukushima, H., Inuzuka, H., Liu, P., Wan, L., Sarkar, F.H., and Wei, W. (2012b). Skp2: a novel potential therapeutic target for prostate cancer. Biochim. Biophys. Acta 1825, 11-17. https://doi.org/10.1016/j.bbcan.2011.09.002
- Wang, Z., Shu, H., Wang, Z., Li, G., Cui, J., Wu, H., Cai, S., He, W., He, Y., and Zhan, W. (2013). Loss expression of PHLPP1 correlates with lymph node metastasis and exhibits a poor prognosis in patients with gastric cancer. J. Surg. Oncol. 108, 427-432. https://doi.org/10.1002/jso.23419
- Yalcin, A., Clem, B.F., Imbert-Fernandez, Y., Ozcan, S.C., Peker, S., O'Neal, J., Klarer, A.C., Clem, A.L., Telang, S., and Chesney, J. (2014). 6-Phosphofructo2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 5, e1337.
- Yao, F., Zhou, Z., Kim, J., Hang, Q., Xiao, Z., Ton, B.N., Chang, L., Liu, N., Zeng, L., Wang, W., et al. (2018). SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat. Commun. 9, 2269.
- Yokoi, S., Yasui, K., Mori, M., Iizasa, T., Fujisawa, T., and Inazawa, J. (2004). Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am. J. Pathol. 165, 175-180. https://doi.org/10.1016/S0002-9440(10)63286-5
- Yu, H.I., Shen, H.C., Chen, S.H., Lim, Y.P., Chuang, H.H., Tai, T.S., Kung, F.P., Lu, C.H., Hou, C.Y., and Lee, Y.R. (2019a). Autophagy modulation in human thyroid cancer cells following aloperine treatment. Int. J. Mol. Sci. 20, 5315.
- Yu, X., Wang, R., Zhang, Y., Zhou, L., Wang, W., Liu, H., and Li, W. (2019b). Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 38, 7457-7472. https://doi.org/10.1038/s41388-019-0955-7
- Yu, Y., Dai, M., Lu, A., Yu, E., and Merlino, G. (2018). PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 37, 2225-2236. https://doi.org/10.1038/s41388-017-0061-7
- Zhang, H. (2010). Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle 9, 861-869. https://doi.org/10.4161/cc.9.5.11153
- Zheng, W.Q., Zheng, J.M., Ma, R., Meng, F.F., and Ni, C.R. (2005). Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70, 770-774. https://doi.org/10.1016/j.steroids.2005.04.012
- Zhiqiang, Z., Qinghui, Y., Yongqiang, Z., Jian, Z., Xin, Z., Haiying, M., and Yuepeng, G. (2012). USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J. Cancer Res. Clin. Oncol. 138, 1231-1238. https://doi.org/10.1007/s00432-012-1193-3