DOI QR코드

DOI QR Code

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Bhandari, Sushil (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Lee, Joon No (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Yoo, Kyeong-Won (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Kim, Se-Jin (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Oh, Gi-Su (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Kim, Hyung-Jin (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Cho, Meyoung (Department of Internal Medicine, Gunsan Medical Center) ;
  • Kwak, Jong-Young (Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University) ;
  • So, Hong-Seob (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Park, Raekil (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University) ;
  • Choe, Seong-Kyu (Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University)
  • Received : 2013.10.17
  • Accepted : 2013.11.08
  • Published : 2014.01.31

Abstract

The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

Keywords

References

  1. Baes, M., and Van Veldhoven, P.P. (2012). Mouse models for peroxisome biogenesis defects and b-oxidation enzyme deficiencies. Biochim. Biophys. Acta 1822, 1489-1500. https://doi.org/10.1016/j.bbadis.2012.03.003
  2. Baes, M., Gressens, P., Baumgart, E., Carmeliet, P., Casteels, M., Fransen, M., Evrard, P., Fahimi, D., Declercq, P.E., Collen, D., et al. (1997). A mouse model for Zellweger syndrome. Nat. Genet. 17, 49-57. https://doi.org/10.1038/ng0997-49
  3. Baes, M., Huyghe, S., Carmeliet, P., Declercq, P.E., Collen, D., Mannaerts, G.P., and Van Veldhoven, P.P. (2000). Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J. Biol. Chem. 275, 16329-16336. https://doi.org/10.1074/jbc.M001994200
  4. Baumgart, E., Vanhorebeek, I., Grabenbauer, M., Borgers, M., Declercq, P.E., Fahimi, H.D., and Baes, M. (2001). Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am. J. Pathol. 159, 1477-1494. https://doi.org/10.1016/S0002-9440(10)62534-5
  5. Choe, S.K., Lu, P., Nakamura, M., Lee, J., and Sagerstrom, C.G. (2009). Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev. Cell. 17, 561-567. https://doi.org/10.1016/j.devcel.2009.08.007
  6. Choe, S.K., Zhang, X., Hirsh, N., Straubhaar, J., and Sagerstrom, C.G. (2011). A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of rhombomere 4 Fgf-signaling center. Dev. Biol. 358, 356-367. https://doi.org/10.1016/j.ydbio.2011.05.676
  7. Dirkx, R., Vanhorebeek, I., Martens, K., Schad, A., Grabenbauer, M., Fahimi, D., Declercq, P., Van Veldhoven, P.P., and Baes, M. (2005). Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41, 868-878. https://doi.org/10.1002/hep.20628
  8. Faust, P.L., Su, H.M., Moser, A., and Moser, H.W. (2001). The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction. J. Mol. Neurosci. 16, 289-297. https://doi.org/10.1385/JMN:16:2-3:289
  9. Ferdinandusse, S., Denis, S., Overmars, H., Van Eeckhoudt, L., Van Veldhoven, P.P., Duran, M., Wanders, R.J., and Baes, M. (2005). Developmental changes of bile acid composition and conjugation in L- and D- bifunctional protein single and double knockout mice. J. Biol. Chem. 280, 18658-18666. https://doi.org/10.1074/jbc.M414311200
  10. Flynn, E.J. 3rd, Trent, C.M., and Rawls, J.F. (2009). Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J. Lipid Res., 50, 1641-1652. https://doi.org/10.1194/jlr.M800590-JLR200
  11. Huyghe, S., Mannaerts, G.P., Baes, M., and Van Veldhoven, P.P. (2006). Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim. Biophys. Acta 1761, 973-994. https://doi.org/10.1016/j.bbalip.2006.04.006
  12. Islinger, J., Grille, S., Fahimi, H.D., and Schrader, M. (2012). The peroxisome: an update on mysteries. Histochem. Cell. Biol. 137, 547-574. https://doi.org/10.1007/s00418-012-0941-4
  13. Kimmel, CB., Ballard, W.W., Kimmel, SR., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. https://doi.org/10.1002/aja.1002030302
  14. Lieschke, G.J., and Currie, P. (2007). Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367. https://doi.org/10.1038/nrg2091
  15. Mehtälä, M.L., Lensink, M.F., Pietikäinen, L.P., Hiltunen, J.K., and Glumoff, T. (2013). On the molecular basis of D-bifunctional protein deficiency type III. PLoS One 8, e53688. https://doi.org/10.1371/journal.pone.0053688
  16. Moller, G., Van Grunsven, E.G., Wanders, R.J., and Adamski, J. (2001). Molecular basis of D-bifunctional protein deficiency. Mol. Cell. Endocrinol. 171, 61-70. https://doi.org/10.1016/S0303-7207(00)00388-9
  17. Muller-Hocker, J., Walther, J.U., Bise, K., Pongratz, D., and Hubner, G. (1984). Mitochondrial myopathy with loosely coupled oxidative phosphorylation in a case of Zellweger syndrome. A cytochemical-ultrastructural study. Virchows. Arc. B Cell. Pathol. Incl. Mol. Pathol. 45, 125-138. https://doi.org/10.1007/BF02889859
  18. Roels, F., Espeel, M., Poggi, F., Mandel, H., Van Maldergem, L., and Saudubray, J.M. (1993). Human liver pathology in peroxisomal diseases: a review including novel data. Biochimie 75, 281-292. https://doi.org/10.1016/0300-9084(93)90088-A
  19. Schlegel, A., and Stainier, D.Y. (2006). Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45, 15179-15187. https://doi.org/10.1021/bi0619268
  20. Suzuki, Y., Jiang, L.L., Souri, M., Miyazawa, S., Fukuda, S., Zhang, Z., Une, M., Shimozawa, N., Kondo, N., Orii, T., et al. (1997). D-3-Hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am. J. Hum. Genet. 61, 1153-1162. https://doi.org/10.1086/301599
  21. Thoms, S., Gronborg, S., and Gartner, J. (2009). Organelle interplay in peroxisomal disorders. Trends Mol. Med. 15, 293-302. https://doi.org/10.1016/j.molmed.2009.05.002
  22. Van Grunsven, E.G., Van Berkel, E., and Ijlst, L. (1998). Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc. Natl. Acad. Sci. USA 95, 2128-2133. https://doi.org/10.1073/pnas.95.5.2128
  23. Van Grunsven, E.G., Mooijer, P.A., Aubourg, P., and Wanders, R.J. (1999). Enoyl-CoA hydratase deficiency: identification of a new type of D-bifunctional protein deficiency. Hum. Mol. Genet. 8, 1509-1516. https://doi.org/10.1093/hmg/8.8.1509
  24. Van Veldhoven, P.P., (2010). Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 51, 2863-2895. https://doi.org/10.1194/jlr.R005959
  25. Verheiiden, S., Bottelbergs, A., Krysko, O., Krysko, D.V., Beckers, L., De Munter, S., Van Veldhoven, P.P., Wyns, S., Kulik, W., Nave, K.A., et al. (2013). Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of purkinje cells independent of very long chain fatty acid accumulation. Neurobiol. Dis. 58, 258-269. https://doi.org/10.1016/j.nbd.2013.06.006

Cited by

  1. Dehydroabietic acid cytotoxicity in goldfish radial glial cells in vitro vol.180, 2016, https://doi.org/10.1016/j.aquatox.2016.09.009
  2. Secretoneurin-A inhibits aromatase B ( cyp19a1b ) expression in female goldfish ( Carassius auratus ) radial glial cells 2017, https://doi.org/10.1016/j.ygcen.2017.04.014
  3. The fatty acid chain elongase, Elovl1, is required for kidney and swim bladder development during zebrafish embryogenesis vol.12, pp.2, 2016, https://doi.org/10.1080/15476278.2016.1172164
  4. Metabolic etiologies in West syndrome vol.3, pp.2, 2014, https://doi.org/10.1002/epi4.12102
  5. Regulatory role of Wdr24 in autophagy activity during zebrafish embryogenesis vol.15, pp.1, 2019, https://doi.org/10.1007/s13273-019-0010-3
  6. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish vol.235, pp.1, 2020, https://doi.org/10.1002/jcp.28954