References
- Ames, E.G., Lawson, M.J., Mackey, A.J., and Holmes, J.W. (2013). Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. J. Mol. Cell Cardiol. 62, 99-107. https://doi.org/10.1016/j.yjmcc.2013.05.004
- Arrisi-Mercado, P., Romano, M., Muro, A.F., and Baralle, F.E. (2004). An exonic splicing enhancer offsets the atypical GU-rich 3′ splice site of human apolipoprotein A-II exon 3. J. Biol. Chem. 279, 39331-39339. https://doi.org/10.1074/jbc.M405566200
- Barreau, C., Paillard, L., and Osborne, H.B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138-7150. https://doi.org/10.1093/nar/gki1012
- Beltran, M., Puig, I., Pena, C., Garcia, J.M., Alvarez, A.B., Pena, R., Bonilla, F., and de Herreros, A.G. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756-769. https://doi.org/10.1101/gad.455708
- Cha, H., Kim, J.M., Oh, J.G., Jeong, M.H., Park, C.S., Park, J., Jeong, H.J., Park, B.K., Lee, Y.H., Jeong, D., et al. (2008). PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractility. J. Mol. Cell Cardiol. 45, 796-803. https://doi.org/10.1016/j.yjmcc.2008.09.124
- Das, D., Clark, T.A., Schweitzer, A., Yamamoto, M., Marr, H., Arribere, J., Minovitsky, S., Poliakov, A., Dubchak, I., Blume, J.E., et al. (2007). A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Res. 35, 4845-4857. https://doi.org/10.1093/nar/gkm485
- Dittmar, K.A., Jiang, P., Park, J.W., Amirikian, K., Wan, J., Shen, S., Xing, Y., and Carstens, R.P. (2012). Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol. Cell. Biol. 32, 1468-1482. https://doi.org/10.1128/MCB.06536-11
- Erkelenz, S., Mueller, W.F., Evans, M.S., Busch, A., Schoneweis, K., Hertel, K.J., and Schaal, H. (2013). Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19, 96-102. https://doi.org/10.1261/rna.037044.112
- Eswaran, J., Horvath, A., Godbole, S., Reddy, S.D., Mudvari, P., Ohshiro, K., Cyanam, D., Nair, S., Fuqua, S.A., Polyak, K., et al. (2013). RNA sequencing of cancer reveals novel splicing alterations. Sci. Rep. 3, 1689. https://doi.org/10.1038/srep01689
- Fairbrother, W.G., Yeh, R.F., Sharp, P.A., and Burge, C.B. (2002). Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007-1013. https://doi.org/10.1126/science.1073774
- Galante, P.A., Sakabe, N.J., Kirschbaum-Slager, N., and de Souza, S.J. (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10, 757-765. https://doi.org/10.1261/rna.5123504
- Gooding, C., Edge, C., Lorenz, M., Coelho, M.B., Winters, M., Kaminski, C.F., Cherny, D., Eperon, I.C., and Smith, C.W. (2013). MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3. Nucleic Acids Res. 41, 4765-4782. https://doi.org/10.1093/nar/gkt168
- Hastings, M.L., Wilson, C.M., and Munroe, S.H. (2001). A purinerich intronic element enhances alternative splicing of thyroid hormone receptor mRNA. RNA 7, 859-874. https://doi.org/10.1017/S1355838201002084
- Hirose, T., Ideue, T., Nagai, M., Hagiwara, M., Shu, M.D., and Steitz, J.A. (2006). A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Mol. Cell 23, 673-684. https://doi.org/10.1016/j.molcel.2006.07.011
- Hong, S.E., Park, I., Cha, H., Rho, S.H., Park, W.J., Cho, C., and Kim, D.H. (2008). Identification of mouse heart transcriptomic network sensitive to various heart diseases. Biotechnol. J. 3, 648-658. https://doi.org/10.1002/biot.200700250
- Huh, G.S., and Hynes, R.O. (1994). Regulation of alternative premRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 8, 1561-1574. https://doi.org/10.1101/gad.8.13.1561
- Kalari, K.R., Rossell, D., Necela, B.M., Asmann, Y.W., Nair, A., Baheti, S., Kachergus, J.M., Younkin, C.S., Baker, T., Carr, J.M., et al. (2012). Deep sequence analysis of non-small cell lung cancer: integrated analysis of gene expression, alternative splicing, and single nucleotide variations in lung adenocarcinomas with and without oncogenic KRAS mutations. Front Oncol. 2, 12.
- Kalsotra, A., Wang, K., Li, P.F., and Cooper, T.A. (2010). MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev. 24, 653-658. https://doi.org/10.1101/gad.1894310
- Kim, E., Goren, A., and Ast, G. (2008). Alternative splicing and disease. RNA Biol. 5, 17-19. https://doi.org/10.4161/rna.5.1.5944
- Kuroyanagi, H., Watanabe, Y., Suzuki, Y., and Hagiwara, M. (2013). Position-dependent and neuron-specific splicing regulation by the CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans. Nucleic Acids Res. 41, 4015-4025. https://doi.org/10.1093/nar/gkt097
- Ladd, A.N., Charlet, N., and Cooper, T.A. (2001). The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285-1296. https://doi.org/10.1128/MCB.21.4.1285-1296.2001
- Lim, K.H., Ferraris, L., Filloux, M.E., Raphael, B.J., and Fairbrother, W.G. (2011). Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc. Natl. Acad. Sci. USA 108, 11093-11098. https://doi.org/10.1073/pnas.1101135108
- Marcel, V., Tran, P.L., Sagne, C., Martel-Planche, G., Vaslin, L., Teulade-Fichou, M.P., Hall, J., Mergny, J.L., Hainaut, P., and Van Dyck, E. (2011). G-quadruplex structures in TP53 intron 3:role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32, 271-278. https://doi.org/10.1093/carcin/bgq253
- Park, J.Y., Li, W., Zheng, D., Zhai, P., Zhao, Y., Matsuda, T., Vatner, S.F., Sadoshima, J., and Tian, B. (2011). Comparative analysis of mRNA isoform expression in cardiac hypertrophy and deve lopment reveals multiple post-transcriptional regulatory modules. PLoS One 6, e22391. https://doi.org/10.1371/journal.pone.0022391
- Reinke, L.M., Xu, Y., and Cheng, C. (2012). Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J. Biol. Chem. 287, 36435-36442. https://doi.org/10.1074/jbc.M112.397125
- Ren, S., Peng, Z., Mao, J.H., Yu, Y., Yin, C., Gao, X., Cui, Z., Zhang, J., Yi, K., Xu, W., et al. (2012). RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 22, 806-821. https://doi.org/10.1038/cr.2012.30
- Song, H.K., Hong, S.E., Kim, T., and Kim, D.H. (2012). Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 7, e35552. https://doi.org/10.1371/journal.pone.0035552
- Taft, R.J., Pheasant, M., and Mattick, J.S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29, 288-299. https://doi.org/10.1002/bies.20544
- Taggart, A.J., DeSimone, A.M., Shih, J.S., Filloux, M.E., and Fairbrother, W.G. (2012). Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat. Struct. Mol. Biol. 19, 719-721. https://doi.org/10.1038/nsmb.2327
- Vencio, R.Z., Brentani, H., Patrao, D.F., and Pereira, C.A. (2004). Bayesian model accounting for within-class biological variability in serial analysis of gene expression (SAGE). BMC Bioinformatics 5, 119. https://doi.org/10.1186/1471-2105-5-119
- Warzecha, C.C., Jiang, P., Amirikian, K., Dittmar, K.A., Lu, H., Shen, S., Guo, W., Xing, Y., and Carstens, R.P. (2010). An ESRPregulated splicing programme is abrogated during the epithelialmesenchymal transition. EMBO J. 29, 3286-3300. https://doi.org/10.1038/emboj.2010.195
- Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562. https://doi.org/10.1038/nature01262
- Wong, J.J., Ritchie, W., Ebner, O.A., Selbach, M., Wong, J.W., Huang, Y., Gao, D., Pinello, N., Gonzalez, M., Baidya, K., et al. (2013). Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583-595. https://doi.org/10.1016/j.cell.2013.06.052
- Yae, T., Tsuchihashi, K., Ishimoto, T., Motohara, T., Yoshikawa, M., Yoshida, G.J., Wada, T., Masuko, T., Mogushi, K., Tanaka, H., et al. (2012). Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat. Commun. 3, 883. https://doi.org/10.1038/ncomms1892
- Yamashita, A., Shichino, Y., Tanaka, H., Hiriart, E., Touat-Todeschini, L., Vavasseur, A., Ding, D.Q., Hiraoka, Y., Verdel, A., and Yamamoto, M. (2012). Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol. 2, 120014. https://doi.org/10.1098/rsob.120014
- Zhou, J., Zheng, X., and Shen, H. (2012). Targeting RNA-splicing for SMA treatment. Mol. Cells 33, 223-228. https://doi.org/10.1007/s10059-012-0005-6
- Zuo, P., and Manley, J.L. (1993). Functional domains of the human splicing factor ASF/SF2. EMBO J. 12, 4727-4737.
Cited by
- Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases vol.16, pp.11, 2015, https://doi.org/10.3390/ijms161126017
- Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution vol.38, pp.11, 2015, https://doi.org/10.14348/molcells.2015.0121
- Epithelial Splicing Regulatory Protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity vol.414, pp.2, 2016, https://doi.org/10.1016/j.ydbio.2016.04.015
- Functional Networks of Nucleocytoplasmic Transport-Related Genes Differentiate Ischemic and Dilated Cardiomyopathies. A New Therapeutic Opportunity vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104709
- An ‘Omics’ Perspective on Cardiomyopathies and Heart Failure vol.22, pp.9, 2016, https://doi.org/10.1016/j.molmed.2016.07.007
- Identification of the Mtus1 Splice Variant as a Novel Inhibitory Factor Against Cardiac Hypertrophy vol.5, pp.7, 2016, https://doi.org/10.1161/JAHA.116.003521
- Alternative splicing in cardiomyopathy vol.10, pp.4, 2018, https://doi.org/10.1007/s12551-018-0439-y
- Transcriptome Complexity in Cardiac Development and Diseases : - An Expanding Universe Between Genome and Phenome - vol.78, pp.5, 2014, https://doi.org/10.1253/circj.cj-14-0412
- Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene vol.40, pp.2, 2014, https://doi.org/10.14348/molcells.2017.2204
- The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases vol.11, pp.4, 2014, https://doi.org/10.3390/genes11040402
- Dynamic Variations of 3′UTR Length Reprogram the mRNA Regulatory Landscape vol.9, pp.11, 2014, https://doi.org/10.3390/biomedicines9111560