• Title/Summary/Keyword: splicing factor

검색결과 52건 처리시간 0.035초

UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export

  • Shen, Hai-Hong
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.185-188
    • /
    • 2009
  • Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.

Pressure-Overload Cardiac Hypertrophy Is Associated with Distinct Alternative Splicing Due to Altered Expression of Splicing Factors

  • Kim, Taeyong;Kim, Jin Ock;Oh, Jae Gyun;Hong, Seong-Eui;Kim, Do Han
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.81-87
    • /
    • 2014
  • Chronic pressure-overload cardiac hypertrophy is associated with an increased risk of morbidity/mortality, largely due to maladaptive remodeling and dilatation that progresses to dilated cardiomyopathy. Alternative splicing is an important biological mechanism that generates proteomic complexity and diversity. The recent development of next-generation RNA sequencing has improved our understanding of the qualitative signatures associated with alternative splicing in various biological conditions. However, the role of alternative splicing in cardiac hypertrophy is yet unknown. The present study employed RNA-Seq and a bioinformatic approach to detect the RNA splicing regulatory elements involved in alternative splicing during pressure-overload cardiac hypertrophy. We found GC-rich exonic motifs that regulate intron retention in 5' UTRs and AT-rich exonic motifs that are involved in exclusion of the AT-rich elements that cause mRNA instability in 3' UTRs. We also identified motifs in the intronic regions involved in exon exclusion and inclusion, which predicted splicing factors that bind to these motifs. We found, through Western blotting, that the expression levels of three splicing factors, ESRP1, PTB and SF2/ASF, were significantly altered during cardiac hypertrophy. Collectively, the present results suggest that chronic pressure-overload hypertrophy is closely associated with distinct alternative splicing due to altered expression of splicing factors.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.

식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절 (Regulation of Abiotic Stress Response by Alternative Splicing in Plants)

  • 석혜연;이선영;문용환
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA의 스플라이싱은 진핵생물 유전자의 적절한 발현에 매우 중요한 역할을 한다. 선택적 스플라이싱은 스플라이싱 위치가 서로 다르게 인식될 때 발생하며 동일한 pre-mRNA로부터 둘 이상의 전사체와 단백질을 생성할 수 있다. 스플라이싱 위치의 결정은 스플라이소솜과 SR 단백질, hnRNP, CBP 등의 스플라이싱 인자에 의해 조절된다. 고온, 저온, 고염, 건조, 저산소 등 다양한 환경 스트레스 조건에서 식물의 많은 스트레스 반응 유전자에 대해 선택적 스플라이싱이 일어나는 것이 알려져 있으며, 이러한 선택적 스플라이싱은 식물이 환경 변화에 적응하기 위한 중요한 기작 중 하나로 여겨진다. 저온, 고온, 고염, 건조 스트레스 조건에서는 스플라이싱 인자의 발현이 변하거나 또는 정상 조건에서와는 다른 스플라이싱 활성을 가짐으로써 선택적 스플라이싱이 일어난다. 환경 스트레스 반응 유전자의 스플라이싱 이소형은 각각 환경 스트레스에 대해 서로 다른 반응을 보이는데 생성되는 조직이 서로 다르기도 하고, 일부 이소형은 넌센스-매개 분해에 의해 분해되기도 한다. 스플라이싱 이소형의 단백질은 환경 스트레스 조건에서 정상 조건과 비교하여 세포 내 위치가 다르기도 하고, 전사인자 또는 효소로서 다른 활성을 가지기도 한다. 이러한 다양한 연구에도 불구하고 식물의 환경 스트레스 반응에서 선택적 스플라이싱에 대한 연구는 일부 스트레스와 유전자에 국한 되어 있고, 아직 분자 기전이 제대로 밝혀지지 않은 부분이 많아 앞으로 더 많은 연구가 필요하다.

Replacement of Thymidine Phosphorylase RNA with Group I Intron of Tetrahymena thermophila by Targeted Trans-Splicing

  • Park, Young-Hee;Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Journal of Microbiology
    • /
    • 제41권4호
    • /
    • pp.340-344
    • /
    • 2003
  • The group I intron from Tetrahymena thermophila has been demonstrated to employ splicing reactions with its substrate RNA in the trans configuration. Moreover, we have recently shown that the transsplicing group I ribozyme can replace HCV-specific transcripts with a new RNA that exerts anti-viral activity. In this study, we explored the potential use of RNA replacement for cancer treatment by developing trans-splicing group I ribozymes, which could replace tumor-associated RNAs with the RNA sequence attached to the 3' end of the ribozymes. Thymidine phosphorylase (TP) RNA was chosen as a target RNA because it is known as a valid cancer prognostic factor. By performing an RNA mapping strategy that is based on a trans-splicing ribozyme library, we first determined which regions of the TP RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, we assessed the ribozyme activities by comparing trans-splicing activities of several ribozymes that targeted different regions of the TP RNA. This assessment was performed to verify if the target site predicted to be accessible is truly the most accessible. The ribozyme that could target the most accessible site, identified by mapping studies, was the most active with high fidelity in vitro. Moreover, the specific trans-splicing ribozyme reacted with and altered the TP transcripts by transferring an intended 3' exon tag sequence onto the targeted TP RNA in mammalian cells with high fidelity. These results suggest that the Tetrahymena ribozyme can be utilized to replace TP RNAs in tumors with a new RNA harboring anti-cancer activity, which would revert the malignant phenotype.

Functional Modification of a Specific RNA with Targeted Trans-Splicing

  • Park, Young-Hee;Kim, Sung-Chun;Kwon, Byung-Su;Jung, Heung-Su;Kim, Kuchan;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.45-52
    • /
    • 2004
  • The self-splicing group I intron from Tetrahymena thermophila has been demonstrated to perform splicing reaction with its substrate RNA in the trans configuration. In this study, we explored the potential use of the trans-splicing group I ribozymes to replace a specific RNA with a new RNA that exerts any new function we want to introduce. We have chosen thymidine phosphorylase (TP) RNA as a target RNA that is known as a valid cancer prognostic factor. Cancer-specific expression of TP RNA was first evaluated with RT-PCR analysis of RNA from patients with gastric cancer. We determined next which regions of the TP RNA are accessible to ribozymes by employing an RNA mapping strategy, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. A specific ribozyme recognizing the most accessible sequence in the TP RNA with firefly luciferase transcript as a 3' exon was then developed. The specific trans-splicing ribozyme transferred an intended 3' exon tag sequence onto the targeted TP transcripts, resulting in a more than two fold induction of the reporter activity in the presence of TP RNA in mammalian cells, compared to the absence of the target RNA. These results suggest that the Tetrahymena ribozyme can be a potent anti-cancer agent to modify TP RNAs in tumors with a new RNA harboring anti-cancer activity.

부분 포스트텐션닝 방법에 의해 연속화된 교량의 주형단면 (Girder Section of Continuous Bridges Spliced by Partial Post-Tensioning)

  • 이환우;곽효경;송영용
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, a new splicing method was applied to design the girder section of bridges with the span length of 25m, 30m, 35m, 40m and 45m. A U-type precast prestressed section was also determined for each bridge. Additionally, the sectional area, beam depth and Guyon's efficiency factor of the spliced U-type sections in each span were analyzed in comparison with the present I-type PSC bridges. As a result, in spite of an increase of 31%∼50% in the sectional areas compared with the I-type precast girders, the spliced U-type the beam depth of the spliced U-type girder was designed as 2,050 mm compared with the I-type precast girder of 2,600mm in a 40m span bridge. The sectional efficiency factors of the spliced U-type sections were analyzed as 0.76∼0.99. It shows that the spliced U-type sections ar of a superior structural efficiency in contrast to the average sectional efficiency factor of 0.66 value in the I-type girders.

Structural Study on Apoptosis of Chronic Eosinophilic Leukemia Cells by Interaction of S100A8 with Splicing Factor, Proline and Glutamine-Rich

  • Won, Yubin;Choi, Hyosun;Kim, In Sik;Mun, Ji Young
    • Applied Microscopy
    • /
    • 제47권4호
    • /
    • pp.233-237
    • /
    • 2017
  • Chronic eosinophilic leukemia (CEL) is a myeloproliferative disease with an increased number of mature eosinophils and their precursors, which results in infiltration into organs and organ enlargement. The main cause of this disease is the overexpression of tyrosine kinase. However, there is a need for alternative medication, because some patients are resistant to imatinib, which is a tyrosine kinase inhibitor for leukemia. Many studies have indicated that S100A8 and splicing factor proline and glutamine-rich (SFPQ) function as initiation signals of apoptosis in CEL cells. We reviewed structural studies on CEL cells related to S100A8 and SFPQ. Particularly, this review highlighted microscopic results for the study of S100A8 and SFPQ in CEL cells.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.