• Title/Summary/Keyword: Network based control

Search Result 4,858, Processing Time 0.034 seconds

A Study of Web-based Remote Pneumatic Servo Control System Using Java Language (자바를 이용한 웹 기반 원격 공압 서보 제어 시스템에 관한 연구)

  • 박철오;안경관;송인성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.196-203
    • /
    • 2003
  • Recent increase in accessibility to the internet makes it easy to use the internet-connected devices. The internet could allow any user can reach and command any device that is connected to the network. But these teleoperation systems using the internet connected device have several problems such as the network time delay, data loss and development cost of an application for the communication with each other. One feasible solution is to use local and external network line for the network time delay, transmission control protocol for data loss and Java language to reduce the development period and cost. In this study, web-based remote control system using Java language is newly proposed and implemented to a pneumatic servo control system to solve the time delay, data loss and development cost. We have conducted several experiments using pneumatic rodless cylinder through the internet and verified that the proposed remote control system was very effective.

Speed Control of Two-Mass System Using Neural Network Estimator (신경망 추정기를 이용한 2관성 공진계의 속도 제어)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choi, Ick;Kim, Kwang-Bae;Lee, Kwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.286-293
    • /
    • 1999
  • A new control scheme using a torsional torque estimator based on a neural network is proposed and investigated for improving control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vibration response, compared with the disturbance observer-based control method. This result comes from the fact that the proposed neural network estimator keeps the self-learning capability, whereas the disturbance observer-based torque estimator with low pass filter should dbjust the time constant of the adopted filter according to the natural resonance frequency detemined by considering the system parameters varied. The simulation results shows the validity of the proposed control scheme.

  • PDF

Neural Network based Variable Structure Control for a Class of Nonlinear Systems (비선형 시스템 계통에서 신경망에 근거한 가변구조 제어)

  • Kim, Hyeon-Ho;Lee, Cheon-Hui
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.56-62
    • /
    • 2001
  • This paper presents a neural network based variable structure control scheme for nonlinear systems. In this scheme, a set of local variable structure control laws are designed on the basis of the linear models about preselected representative points which cover the range of the system operation of interest. From the combination of the set of local variable structure control laws, neural networks infer the approximate control input in between the operating points. The neural network based variable structure control alleviates the effects of model uncertainties, which cannot be compensated by the control techniques using feedback linearization. It also relaxes the discontinuity in the system’s behavior that appears when the control schemes based on the family of the linear models are applied to nonlinear systems. Simulation results of a ball and beam system, to which feedback linearization cannot be applied, demonstrate the feasibility of the proposed method.

  • PDF

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

The Development of Motor Controller based on Network using Optic-EtherCAT (광 EtherCAT을 이용한 네트워크 기반 모터 제어기 개발)

  • Moon, Yong-Seon;Lee, Gwang-Seok;Seo, Dong-Jin;Bae, Young-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • In this paper, we design, implement and apply network physical layer to 100 BaseFx optical cable interface module based on industrial ethernet protocol which is physical layer of EtherCAT that has ensure its open standard ethernet compatibility which having been provided with real time of control in network of intelligent service robot, can be process numerous data to sensor and motor control system. Through BLDC motor control performance tests, we try to propose suitability as internal network of intelligent service robot and automation system.

Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

Internet Web-Based Rectifier Remote Control System Using SNMP (인터넷 웹 기반 환경에서의 정류기용 원격 제어 시스템)

  • 최주엽;오영은;전호석;김택용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.570-578
    • /
    • 1999
  • This paper aims at developing remote control system to control and monitor distributed various devices t through Internet or information communication network. SNJV!P(Simple Network l\ilanagement Protocol) and R Rectifier system with SN:\IP are adoptL'Cl for applied system with network management protocoJ, respectiveJy. F For controJling and monitoring distributed devices in realtime, Java environment software is constructed. Also g general--purpose interface controller between network device and applied device is pro[XJsed. The ProPOSL'Cl c controller is also able to control various devices with communication network remotely.

  • PDF

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Access Control for D2D Systems in 5G Wireless Networks

  • Kim, Seog-Gyu;Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.103-110
    • /
    • 2021
  • In this paper, we compare two access control mechanisms for D2D(Device-to-Device) systems in 5G wireless networks and propose an effective access control for 5G D2D networks. Currently, there is no specified access control for 5G D2D networks but there can be two access control approaches for 5G D2D networks. One is the UE-to-Network Relay based access control and the other is the Remote UE(User Equipment) based access control. The former is a UE-to-Network Relay carries out the access control check for 5G D2D networks but the latter is a Remote UE performs the access control check for 5G D2D networks. Through simulation and evaluation, we finally propose the Remote UE based access control for D2D systems in 5G wireless networks. The proposed approach minimizes signalling overhead between the UE-to-Network Relay and the Remote UE and more efficiently performs the access control check, when the access control functionalities are different from the UE-to-Network Relay in 5G D2D networks.