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Self-Recurrent Wavelet Neural Network Based Termina! Sliding Mode Control of
Nonlinear Systems with Uncertainties
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Abstract - In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems
with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite
time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast
with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent
wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained

by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of
the proposed control.

Key Words : Terminal sliding mode control, Nonlinear system, Self-recurrent wavelet neural network, Lyapunov
stability theorem

1. Introduction However, the stability is not guaranteed for nonlinear
systems with uncertainties. So, we use the neural network
Many nonlinear systems are used in real applicable to solve that problem. Especially, self-recurrent wavelet
technologies. Those nonlinear systems have many actual neural network(SRWNN) is proposed among many famous
uncertainties such as the structured and parametric neural networks in this paper. As matter of fact, many
uncertainties. Model imprecision may come from actual neural networks, such as multi-layer perception(MLP)[4],
uncertainties about the plant or from the purposeful choice radial based function network(RBFN)[B], etc are used.
of a simplified representation of the system’s dynamics[1].  Also, wavelet neural network(WNN) is used as the good
Generally, sliding mode control(SMC) method for those tool for the estimation of many nonlinear system with
nonlinear systems with uncertainties such as biped robot uncertainties[6]. However, even though the WNN has fast
and spacecraft because of stability[1],[2]. convergence ability, it cannot confront the unexpected
Recently, a new control method called terminal sliding change of system because it dose not have memories. So,
mode contro(TSMC) has been developed[3]l. While we employ the SRWNN which has the memories to
classical SMC has a linear sliding surface, TSMC has a  overcome this disadvantage of WNN[7.
nonlinear sliding surface. The system tracking error is In this paper, we proposed the control method of
driven to zero within finite time while those reached to nonlinear system with uncertainties, using the SRWNN
terminal sliding surface. Also, TSMC has the following based TSMC for the stability of systems. All weights of
advantages in comparison with classical SMCI[3]. First, the SRWNN are trained by adaptive laws based on
TSMC has the improved performance that results from the Lyapunov stability theorem, which is used to guarantee
elimination of chattering. Second, TSMC has the improved the stability of control systems. Finally, we carry out
robustness. This results from the dependence of terminal computer simulations for a simple nonlinear system with
slider stability upon the rate of change of uncertainties. uncertainties in order to verify the effectiveness of
Third, TSMC has the improved reliability which is yielded ~SRWNN based TSMC.
by the elimination of interpolation regions. Finally, TSMC

has the more improved precision than classical SMC. 2. Terminal Sliding Mode Control
Az A TSMC has a nonlinear sliding surface in order to obtain
* o)Almr EHREY R - ETIEHN HIRE the finite time convergence of the system tracking error.
30 % B . 2 -
= HEE ARARK BT LBE Bl - 1H So, we defined the terminal sliding surface as follows:
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s=etae’ 1)

where > 0 and 0 < y< 1,

The terminal
follows:

sliding surface can be described as

s=etae’ =0 ©
Eq. (2) can be expressed into the following form:
e=—ae" 3

In the TSMC, the system tracking error is determined
by Eq. (3). Also, the system is infinitely stable in TSM
because Eq. (3) defines the stability.
However, if we select proper 7y, we can get a final time.
This fact shows that the system is finitely stable. The
convergence time for a solution of Eq. (3) is given by

exponentially

de ~ de
- ——ael = dt=——
dt ae”
0 de le (0)! "
e ae?  all—7) @

where, €{(0) is the initial value of e at t=0.

From Eq. (4), we know that the system tracking error
converges to zero within finite time.

3. Self Recurrent Wavelet Neural Network

The SRWNN structure is shown in Fig. 1. The basic
structure of SRWNN is composed of /V, inputs, one

output, and V; X N, mother wavelets. The SRWNN is

consists of four layers as follows[7]:

Layer 4

Layer 3

Layer 2

Layer 1

Fig. 1 The SRWNN structure,

The layer 1 is an input layer. This layer accepts the
input variables and transmits the accepted inputs to the
next later directly.

The layer 2 is mother wavelet layer. Each node of this
layer has a mother wavelet and a self-feedback loop. In
this paper, we select the first derivative of Gaussian
function of a mother wavelet function.

The layer 3 is product layer. The nodes in this layer
are given by the product of the mother wavelets.

The layer 4 is output layer. The node output is a linear
combination of consequences obtained from the output of
layer 3. In addition, the output node accepts directly input
values form the input layer. Therefore, the SRWNN output
is composed by self-recurrent wavelets and parameters.

4. Simulation Example

Consider the five-link biped robot as follows[2]):

Ho+ Blg g+ Glo+ Ha =, (5

where, = (q, ¢7) is the uncertainty of the robot system.

The above equation can be rewritten as follows:

7= H (9(r,~ Blg.a)- Glo+=lg.9.7) (6)
=H (7, - Ble9- 6@)+(gq7)

Here, the uncertainty term Y(¢47) cannot be computed
directly, so we use SRWNN[7]. Also, we use the classical
sliding surface and terminal sliding surface, respectively,
for the control of system.

First, we use the classical sliding surface as follows:

s=e+tae )]

Second, we use the terminal sliding surface as Eq. (1).
Also, the parameter of the robot model is used in [5]. We
simulate SMC with 100% parametric uncertainty of which
100% each of parameter value is added on the mass and
the moment of inertia. We choose the control gain A. Also,
we simulate within final time 2 sec, and the sampling time
is chosen as 0.002 sec. In this paper, we use the SRWNN
to solve uncertainty problem. At this time, we give the
positive tuning gains, A, and A, to guarantee the stability
of our control system,.

Originally, SMC technique is good controller. However,
SMC has a disadvantage such as chattering. So, we use
TSMC technique to solve this problem. Also, TSMC has
more efficient tracking performance than SMC. The results
of mean square error(MSE) for SMC and TSMC are
shown in Figs. 2 and Fig 3, respectively.
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Fig. 2 Mean square error for SMC.
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Fig. 3 Mean square error for TSMC.
Table 1 The comparison of MSE.
SMC TSMC
MSE of joint 1 0.1006 0.0307
MSE of joint 2 0.0730 0.0205
MSE of joint 3 0.0720 0.0218
MSE of joint 4 0.0776 0.0245
Though SMC is efficient control technique, its

performance is degraded for the system with uncertainties.
In this paper,
SRWNN.

We verify the advantage of TSMC from the simulation

this uncertainty problem is solved by

results, and these results are shown in Figs. 2 and 3, and
Table 1. Figures 1 and 2 show the MSE for SMC and
TSMC, respectively. From these figures, we can verify the
difference for two cases. Table 1 compaeres simulation
results of SMC and TSMC, where the MSE of TSMC is
lower than that of SMC. That is, the MSE of SMC has
triple MSE for each of joints in contrast with TSMC.

5. Conclusion

In this paper, we have designed a terminal sliding mode
controller based on self recurrent wavelet neural network
for nonlinear system with uncertainties. This terminal
mode control improve

sliding technique was used to

performance, robustness, reliability and precision by
contrast with classical sliding mode control. In addition, by
using SRWNN, problem of systems such as uncertainties
the SRWNN

having simple structure was used to estimate the unknown

is solved easilv. In our control system,
uncertainties and the nonlinear functions. The weights of
SRWNN were trained by adaptation law based on the
Lyapunov stability theorem which guarantee the stability
of the designed control system. Finally, the computer
simulation results showed the good tracking performance

and the advantages of control method.
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