지난 2020년부터 세계는 COVID-19 확산으로 인해 사회적 거리두기와 재택근무를 시행함에 따라 인터넷을 활용한 비디오 및 음성 관련 콘텐츠 서비스와 클라우드 컴퓨팅 활성화로 인터넷에 대한 의존도가 늘어나면서 라우팅 프로토콜 기반 실시간 스트리밍 세션이 증가하고 있다. BGP는 가장 많이 사용되는 라우팅 프로토콜로써 보안성을 향상시키기 위해 많은 연구들이 지속되고 있으나 분석의 실시간성과 알고리즘의 오탐을 판단하기 위한 시각적 분석이 부족하다. 본 논문은 정상 및 이상으로 분류된 BGP 데이터를 수집 및 전처리 후 통계적 기법과 Rule-based 기법을 융합한 이상징후 감지 알고리즘을 활용하여 실 데이터 기반으로 분석한다. 더불어 지도 및 Sankey Chart 기반 시각화 기법으로 알고리즘의 분석 결과와 직관적인 시각화 방안으로 인터랙티브한 시공간 분석 방안을 제시한다.
센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.
Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.
오늘날 빅데이터 활용의 필요성이 증가하면서 개인, 기업, 국가 등에서 SNS 데이터를 포함해 빅데이터를 이용한 다양한 분석 활동들이 이루어지고 있다. 그러나 기존 기술 시장 동향 예측연구는 전문가에 의존적이거나 특허나 문헌 연구 기반 데이터를 이용한 연구가 주로 진행되어 왔으며 빅데이터를 활용한 객관적인 기술 예측이 필요하다. 이에 본 연구는 소셜네트워크서비스(SNS)의 데이터로 의사결정나무 분석, 시각화 분석, 백분율 분석을 통해 미래 기술을 예측하는 모델을 제시하고자 한다. 연구 결과 백분율 분석은 다른 분석 결과에 비해 긍정적인 기술을 더 잘 예측할 수 있었고, 시각화 분석은 다른 분석 결과에 비해 부정적인 기술을 더 잘 예측할 수 있었다. 의사결정나무 분석도 의미 있는 예측은 가능하였다.
Journal of Electrical Engineering and information Science
/
제2권6호
/
pp.64-73
/
1997
Network technology has been developed for very high-speed networking and multimedia data whose characteristics are the continuous and bursty transmission as well as a large amount of data. With this trend users wish to view the information about the application services as well as network devices and system hardware. However, it is rarely available for the users the information of performance or faults of the application services. Most of information is limited to the information related network devices or system hardware. Furthermore, users expect the best services without knowing the service environments in the network and there is no good way of delivering the service related problems and fault information of application services in a high speed network yet. In this paper we present a web-based application management system that we have developed for the past year. It includes a method to build an agent system that uses an existing network management standards, SNMP MIB and SNMP protocols. The user interface of the system is also developed to support visualization effects with web-based Java interface which offers a convenient way not only to access management information but also to control networked applications.
Akbar, Waleed;Rivera, Javier J.D.;Ahmed, Khan T.;Muhammad, Afaq;Song, Wang-Cheol
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권8호
/
pp.2801-2815
/
2022
With the advent and realization of Software Defined Network (SDN) architecture, many organizations are now shifting towards this paradigm. SDN brings more control, higher scalability, and serene elasticity. The SDN spontaneously changes the network configuration according to the dynamic network requirements inside the constrained environments. Therefore, a monitoring system that can monitor the physical and virtual entities is needed to operate this type of network technology with high efficiency and proficiency. In this manuscript, we propose a real-time monitoring system for data collection and visualization that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on the physical devices to collect the physical and virtual entities resources utilization logs. A real-time Prometheus database is configured to collect and store the data from all the exporters. Furthermore, the Grafana is affixed with Prometheus to visualize the current network status and device provisioning. A monitoring system is deployed on the physical infrastructure of the KOREN topology. Data collected by the monitoring system is further pre-processed and restructured into a dataset. A monitoring system is further enhanced by including machine learning techniques applied on the formatted datasets to identify the elephant flows. Additionally, a Random Forest is trained on our generated labeled datasets, and the classification models' performance are verified using accuracy metrics.
Kim, Jae-Hyoung;Jeon, Hae-Jin;Choi, Bong-Yeol;Lee, Seung-Ha;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.40-45
/
2004
This work presents a boundary estimation approach in electrical impedance imaging for binary-mixture fields based on a parallel structured multi-layer neural network. The interfacial boundaries are expressed with the truncated Fourier series and the unknown Fourier coefficients are estimated with the parallel structure of multi-layer neural network. Results from numerical experiments shows that the proposed approach is insensitive to the measurement noise and has a strong possibility in the visualization of binary mixtures for a real time monitoring.
In this paper, we propose AnoVid, an automated video annotation tool based on deep neural networks, that automatically generates various meta data for each scene or shot in a long drama video containing rich elements. To this end, a novel meta data schema for drama video is designed. Based on this schema, the AnoVid video annotation tool has a total of six deep neural network models for object detection, place recognition, time zone recognition, person recognition, activity detection, and description generation. Using these models, the AnoVid can generate rich video annotation data. In addition, AnoVid provides not only the ability to automatically generate a JSON-type video annotation data file, but also provides various visualization facilities to check the video content analysis results. Through experiments using a real drama video, "Misaeing", we show the practical effectiveness and performance of the proposed video annotation tool, AnoVid.
Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.
한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
/
pp.91-110
/
2004
A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.