• 제목/요약/키워드: Network Visualization

검색결과 478건 처리시간 0.027초

BGP 네트워크 데이터 내의 이상징후 감지를 위한 인터랙티브 시각화 분석 기법 (Interactive Visual Analytic Approach for Anomaly Detection in BGP Network Data)

  • 최소미;김선영;이재연;고장혁;권구형;주재걸
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.135-143
    • /
    • 2022
  • 지난 2020년부터 세계는 COVID-19 확산으로 인해 사회적 거리두기와 재택근무를 시행함에 따라 인터넷을 활용한 비디오 및 음성 관련 콘텐츠 서비스와 클라우드 컴퓨팅 활성화로 인터넷에 대한 의존도가 늘어나면서 라우팅 프로토콜 기반 실시간 스트리밍 세션이 증가하고 있다. BGP는 가장 많이 사용되는 라우팅 프로토콜로써 보안성을 향상시키기 위해 많은 연구들이 지속되고 있으나 분석의 실시간성과 알고리즘의 오탐을 판단하기 위한 시각적 분석이 부족하다. 본 논문은 정상 및 이상으로 분류된 BGP 데이터를 수집 및 전처리 후 통계적 기법과 Rule-based 기법을 융합한 이상징후 감지 알고리즘을 활용하여 실 데이터 기반으로 분석한다. 더불어 지도 및 Sankey Chart 기반 시각화 기법으로 알고리즘의 분석 결과와 직관적인 시각화 방안으로 인터랙티브한 시공간 분석 방안을 제시한다.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

빅데이터를 이용한 기술 시장동향 예측 (Forecasting Market trends of technologies using Bigdata)

  • 최미선;조용확;김진화
    • 산업융합연구
    • /
    • 제21권10호
    • /
    • pp.21-28
    • /
    • 2023
  • 오늘날 빅데이터 활용의 필요성이 증가하면서 개인, 기업, 국가 등에서 SNS 데이터를 포함해 빅데이터를 이용한 다양한 분석 활동들이 이루어지고 있다. 그러나 기존 기술 시장 동향 예측연구는 전문가에 의존적이거나 특허나 문헌 연구 기반 데이터를 이용한 연구가 주로 진행되어 왔으며 빅데이터를 활용한 객관적인 기술 예측이 필요하다. 이에 본 연구는 소셜네트워크서비스(SNS)의 데이터로 의사결정나무 분석, 시각화 분석, 백분율 분석을 통해 미래 기술을 예측하는 모델을 제시하고자 한다. 연구 결과 백분율 분석은 다른 분석 결과에 비해 긍정적인 기술을 더 잘 예측할 수 있었고, 시각화 분석은 다른 분석 결과에 비해 부정적인 기술을 더 잘 예측할 수 있었다. 의사결정나무 분석도 의미 있는 예측은 가능하였다.

Web-based Application Service Management System for Fault Monitoring

  • Min, Sang-Cheol;Chung, Tai-Myoung;Park, Hyoung-Woo;Lee, Kyung-Ha;Pang, Kee-Hong
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.64-73
    • /
    • 1997
  • Network technology has been developed for very high-speed networking and multimedia data whose characteristics are the continuous and bursty transmission as well as a large amount of data. With this trend users wish to view the information about the application services as well as network devices and system hardware. However, it is rarely available for the users the information of performance or faults of the application services. Most of information is limited to the information related network devices or system hardware. Furthermore, users expect the best services without knowing the service environments in the network and there is no good way of delivering the service related problems and fault information of application services in a high speed network yet. In this paper we present a web-based application management system that we have developed for the past year. It includes a method to build an agent system that uses an existing network management standards, SNMP MIB and SNMP protocols. The user interface of the system is also developed to support visualization effects with web-based Java interface which offers a convenient way not only to access management information but also to control networked applications.

  • PDF

A Machine Learning-based Real-time Monitoring System for Classification of Elephant Flows on KOREN

  • Akbar, Waleed;Rivera, Javier J.D.;Ahmed, Khan T.;Muhammad, Afaq;Song, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2801-2815
    • /
    • 2022
  • With the advent and realization of Software Defined Network (SDN) architecture, many organizations are now shifting towards this paradigm. SDN brings more control, higher scalability, and serene elasticity. The SDN spontaneously changes the network configuration according to the dynamic network requirements inside the constrained environments. Therefore, a monitoring system that can monitor the physical and virtual entities is needed to operate this type of network technology with high efficiency and proficiency. In this manuscript, we propose a real-time monitoring system for data collection and visualization that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on the physical devices to collect the physical and virtual entities resources utilization logs. A real-time Prometheus database is configured to collect and store the data from all the exporters. Furthermore, the Grafana is affixed with Prometheus to visualize the current network status and device provisioning. A monitoring system is deployed on the physical infrastructure of the KOREN topology. Data collected by the monitoring system is further pre-processed and restructured into a dataset. A monitoring system is further enhanced by including machine learning techniques applied on the formatted datasets to identify the elephant flows. Additionally, a Random Forest is trained on our generated labeled datasets, and the classification models' performance are verified using accuracy metrics.

Boundary estimation in electrical impedance tomography with multi-layer neural networks

  • Kim, Jae-Hyoung;Jeon, Hae-Jin;Choi, Bong-Yeol;Lee, Seung-Ha;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.40-45
    • /
    • 2004
  • This work presents a boundary estimation approach in electrical impedance imaging for binary-mixture fields based on a parallel structured multi-layer neural network. The interfacial boundaries are expressed with the truncated Fourier series and the unknown Fourier coefficients are estimated with the parallel structure of multi-layer neural network. Results from numerical experiments shows that the proposed approach is insensitive to the measurement noise and has a strong possibility in the visualization of binary mixtures for a real time monitoring.

  • PDF

AnoVid: 비디오 주석을 위한 심층 신경망 기반의 도구 (AnoVid: A Deep Neural Network-based Tool for Video Annotation)

  • 황지수;김인철
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.986-1005
    • /
    • 2020
  • In this paper, we propose AnoVid, an automated video annotation tool based on deep neural networks, that automatically generates various meta data for each scene or shot in a long drama video containing rich elements. To this end, a novel meta data schema for drama video is designed. Based on this schema, the AnoVid video annotation tool has a total of six deep neural network models for object detection, place recognition, time zone recognition, person recognition, activity detection, and description generation. Using these models, the AnoVid can generate rich video annotation data. In addition, AnoVid provides not only the ability to automatically generate a JSON-type video annotation data file, but also provides various visualization facilities to check the video content analysis results. Through experiments using a real drama video, "Misaeing", we show the practical effectiveness and performance of the proposed video annotation tool, AnoVid.

복합시스템 고장진단을 위한 다중신경망 개발 (Development of Multiple Neural Network for Fault Diagnosis of Complex System)

  • 배용환
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.36-45
    • /
    • 2000
  • Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF