• Title/Summary/Keyword: Network Failure Analysis

Search Result 281, Processing Time 0.028 seconds

Design of Dual Network Topology and Redundant Transmitting Protocol for High Survivability of Ship Area Network (SAN) (네트워크 생존성을 고려한 선박 통신망(SAN)의 이중화 네트워크 토폴로지 및 중복 전송 프로토콜의 설계)

  • Son, Chi-Won;Shin, Jung-Hwa;Jung, Min-Young;Moon, Kyeong-Deok;Park, Jun-Hee;Lee, Kwang-Il;Tak, Sung-Woo
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.119-128
    • /
    • 2010
  • In the shipbuilding industry, due to the global trends where the number of IT (Information Technology) devices of a smart ship have been increased rapidly, the need to develop a new shipboard backbone network has recently emerged for integrating and managing the IT devices of a smart ship efficiently. A shipboard backbone network requires high survivability because it is constructed in automatic and unmanned smart ships where a failure of the backbone network can cause critical problems. The purpose of this paper thus is to study SAN (Ship Area Network) as a efficient shipboard backbone network, considering particularity of shipboard environment and requirement of high survivability. In order to do so, we designed a dual network topology that all network nodes, including the IT devices installed in a smart ship, are connected each other through dual paths, and reuding tht IT devices pnstalles supporices network survivability as well as t Iffic efficiency for the dual network topology. And then, we verified the performance of the suggested SAN by theoretical and practical analysis including the graph theory, the probability theory, implemental specifications, and computer simulations.

Structural Reliability Analysis via Response Surface Method (응답면 기법을 이용한 구조 신뢰성 해석)

  • Yang, Y.S.;Lee, J.O.;Kim, P.Y.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.98-108
    • /
    • 1996
  • In the reliability analysis of general structures, the limit state equations are implicit and cannot be described in closed form. Thus, sampling methods such as the Crude Monte-Carlo simulation, and probabilistic FEM are often used, but these methods are not so effective in view of computational cost, because a number of structural analysis are required and the derivatives must be calculated for probabilistic FEM. Alternatively the response surface approach, which approximates the limit state surface by using several results of structural analysis in the region adjacent to MPFP, could be applied effectively. In this paper, the central composite design, Bucher-Bourgund method and the approximation method using artificial neural network are studied for the calculation of probability of failure by the response surface method. Through the example comparisons, it is found that Bucher-Bourgund method is very effective and Neural network method for the reliability analysis is comparable with other methods. Specially, the central composite design method is found to be rational and useful in terms of mathematical consistency and accuracy.

  • PDF

Two-Layer Approach Using FTA and BBN for Reliability Analysis of Combat Systems (전투 시스템의 신뢰성 분석을 위한 FTA와 BBN을 이용한 2계층 접근에 관한 연구)

  • Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.333-340
    • /
    • 2019
  • A combat system performs a given mission enduring various threats. It is important to analyze the reliability of combat systems in order to increase their ability to perform a given mission. Most of studies considered no threat or on threat and didn't analyze all the dependent relationships among the components. In this paper, we analyze the loss probability of the function of the combat system and use it to analyze the reliability. The proposed method is divided into two layers, A lower layer and a upper layer. In lower layer, the failure probability of each components is derived by using FTA to consider various threats. In the upper layer, The loss probability of function is analyzed using the failure probability of the component derived from lower layer and BBN in order to consider the dependent relationships among the components. Using the proposed method, it is possible to analyze considering various threats and the dependency between components.

Statistical Analysis for Path Break-Up Time of Mobile Wireless Networks (이동 무선망의 경로 붕괴시간에 대한 통계적 분석)

  • Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.113-118
    • /
    • 2015
  • Mobile wireless networks have received a lot of attention as a future wireless network due to its rapid deployment without communication infrastructure. In these networks communication path between two arbitrary nodes break down because some links in the path are beyond transmission range($r_0$) due to the mobility of the nodes. The set of total path break down time(${\bigcup}T_i$), which is the union of path break down time of every node pair, can be a good measure of the connectivity of the dynamic mobile wireless network. In this paper we show that the distribution of the total path break down time can be approximated as a exponential probability density function and confirms it through experimental data. Statistical knowledge of break down time enables quantitative prediction of delay, packet loss between two nodes, thus provides confidence in the simulation results of mobile wireless networks.

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.

Factors affecting success and failure of Internet company business model using inductive learning based on ID3 algorithm (ID3 알고리즘 기반의 귀납적 추론을 활용한 인터넷 기업 비즈니스 모델의 성공과 실패에 영향을 미치는 요인에 관한 연구)

  • Jin, Dong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • New technologies such as the IoT, Big Data, and Artificial Intelligence, starting from the Web, mobile, and smart device, enable new business models that did not exist before, and various types of Internet companies based on these business models has been emerged. In this research, we examine the factors that influence the success and failure of Internet companies. To do this, we review the recent studies on business model and examine the variables affecting the success of Internet companies in terms of network effect, user interface, cooperation with actors, creating value for users. Using the five derived variables, we will select 14 Internet companies that succeeded and failed in seven commercial business model categories. We derive decision tree by applying inductive learning based on ID3 algorithm to the analysis result and derive rules that affect success and failure based on derived decision tree. With these rules, we want to present the strategic implications for actors to succeed in Internet companies.

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Applications of Graph Theory for the Pipe Network Analysis (상수관망해석을 위한 도학의 적용)

  • Park, Jae-Hong;Han, Geon-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.439-448
    • /
    • 1998
  • There are many methods to calculate steady-state flowrate in a large water distribution system. Linear method which analyzes continuity equations and energy equations simultaneously is most widely used. Though it is theoretically simple, when it is applied to a practical water distribution system, it produces a very sparse coefficient matrix and most of its diagonal elements are to be zero. This sparsity characteristic of coefficient matrix makes it difficult to analyze pipe flow using the linear method. In this study, a graph theory is introduced to water distribution system analysis in order to prevent from producing ill-conditioned coefficient matrix and the technique is developed to produce positive-definite matrix. To test applicability of developed method, this method is applied to 22 pipes and 142 pipes system located nearby Taegu city. The results obtained from these applications show that the method can calculate flowrate effectively without failure in converage. Thus it is expected that the method can analyze steady state flowrate and pressure in pipe network systems efficiently. Keywords : pipe flow analysis, graph theory, linear method.

  • PDF

Properties and classification of air discharge by Kohonen network (기중방전의 특성분석과 Kohonen network에 의한 방전원의 패턴분류)

  • 강성화;박영국;이광우;김완수;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.704-707
    • /
    • 1999
  • Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.

  • PDF

A Group Key Management Scheme for WSN Based on Lagrange Interpolation Polynomial Characteristic

  • Wang, Xiaogang;Shi, Weiren;Liu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3690-3713
    • /
    • 2019
  • According to the main group key management schemes logical key hierarchy (LKH), exclusion basis systems (EBS) and other group key schemes are limited in network structure, collusion attack, high energy consumption, and the single point of failure, this paper presents a group key management scheme for wireless sensor networks based on Lagrange interpolation polynomial characteristic (AGKMS). That Chinese remainder theorem is turned into a Lagrange interpolation polynomial based on the function property of Chinese remainder theorem firstly. And then the base station (BS) generates a Lagrange interpolation polynomial function f(x) and turns it to be a mix-function f(x)' based on the key information m(i) of node i. In the end, node i can obtain the group key K by receiving the message f(m(i))' from the cluster head node j. The analysis results of safety performance show that AGKMS has good network security, key independence, anti-capture, low storage cost, low computation cost, and good scalability.