• Title/Summary/Keyword: Negative Loop

Search Result 202, Processing Time 0.023 seconds

A Low Power, Wide Tuning Range VCO with Two-Step Negative-Gm Calibration Loop (2단계 자동 트랜스컨덕턴스 조절 기능을 가진 저전력, 광대역 전압제어 발진기의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents a low-power, wide tuning range VCO with automatic two-step negative-Gm calibration loop to compensate for the process, voltage and temperature variation. To cover the wide tuning range, digital automatic negative-Gm tuning loop and analog automatic amplitude calibration loop are used. Adaptive body biasing (ABB) technique is also adopted to minimize the power consumption by lowering the threshold voltage of transistors in the negative-Gm core. The power consumption is 2 mA to 6mA from a 1.2 V supply. The VCO tuning range is 2.65 GHz, from 2.35 GHz to 5 GHz. And the phase noise is -117 dBc/Hz at the 1 MHz offset when the center frequency is 3.2 GHz.

A Low Noise Phase Locked Loop with Three Negative Feedback Loops (세 개의 부궤환 루프를 가진 저잡음 위상고정루프)

  • Young-Shig Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.167-172
    • /
    • 2023
  • A low-noise phase-locked loop(PLL) with three negative feedback loops has been proposed. It is not easy to improve noise characteristics with a conventional PLL. The added negative feedback loops reduce the input voltage magnitude of voltage controlled oscillator which determines the jitter characteristics, enabling the improvement of noise characteristics. Simulation results show that the jitter characteristics are improved as a negative feedback loop is added. In the case of power consumption, it slightly rises by about 10%, but jitter characteristics are improved by about two times. The proposed PLL was simulated with Hspice using a 1.8V 180nm CMOS process.

Low Phase Noise VCO Using Microstrip Square Open Loop Resonator and Tunable Negative Resistance (Microstrip Square Open Loop와 Tunable Negative Resistance를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Lee, Chong-Min;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1143-1149
    • /
    • 2006
  • The microstrip square open loop resonator has been employed to reduce the phase noise in VCO. The microstrip square open loop resonator has the large coupling coefficient value, which makes a high Q value, and has reduced the phase noise of VCO. To increase the tuning range of VCO, varactor diode has been connected at the tunable negative resistance in VCO. The output power and harmonic characteristics of VCO has been obtained 4.83 dBm and -28.83 dBc, respectively. The phase noise of VCO has been $-112.33{\sim}-116.16dBc/Hz$ @ 100 kHz in the tuning range, $5.735{\sim}5.845GHz$.

A Structural Analysis between Financial Regulations and Security Industry through the Systems Thinking (시스템 사고를 통한 금융 규제와 보안 산업의 구조 분석)

  • Lee, Jeong-Ha
    • Korean System Dynamics Review
    • /
    • v.16 no.4
    • /
    • pp.31-50
    • /
    • 2015
  • The purpose of this research is to understand a structural relationship between financial regulations and security industry based on the systems thinking perspective using causal loop analysis. As a result, the positive regulations on security technology against finance security incidents shrink the autonomy of the security industry and will deteriorate the competitiveness of the security industry through the unknown feedback loop. The conclusion provides the direction that policy makers understand causal loop diagram related current regulations and open enough to the consideration of the negative regulations.

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.

Low Phase Noise Push-Push VCO Using Microstrip Square Open Loop Resonator and Tunable Negative Resistance (마이크로스트립 사각 개방 루프 공진기와 가변 부성 저항을 이용한 저위상 잡음 Push-Push 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.847-853
    • /
    • 2007
  • In this paper, a novel push-push voltage-controlled oscillator(VCO) using microstrip square open loop resonator and tunable negative resistance is presented. The microstrip square open loop resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of VCO. The VCO with 1.8V power supply has phase noise of $-124.67{\sim}-122.67dBc/Hz\;@\;100 kHz$ in the tuning range, $5.744{\sim}5.859 GHz$. The FOM of this VCO is $-202.83{\sim}-201dBc/Hz\;@\;100 kHz$ in the same tuning range. When it has been compared with single-ended VCO using microstrip square open loop resonator, and push-push oscillator using microstrip line resonator, the reduced phase noise has been -8.51dB, and -33.67dB, respectively.

An Extremely Small Size Multi-Loop Phase Locked Loop (복수개의 부궤환 루프를 가진 초소형 크기의 위상고정루프)

  • Choi, Young-Shig;Han, Geun-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • An extremely small size multi-loop phase-locked loop(PLL) keeping phase noise performances has been proposed. It has been designed to have the loop filter made of small single capacitor with multiple Frequency Voltage Converters (FVCs) because the main goal is to make the size of the proposed PLL extremely small. Multiple FVCs which are connected to voltage controlled oscillator(VCO) make multiple negative feedback loops in PLL. Those multiple negative feedback loops enable the PLL with the loop filter made of an extremely small size single capacitor operate stably. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the 1.6ps jitter and $10{\mu}s$ locking time.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

Characteristic for the Near Field of Rectangle Loop Antenna using Optical Electric-Field Sensor (광전계 센서를 이용한 구형 Loop Antenna의 근접전계 특성)

  • 이주현;도쿠다마사미추;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • In this paper, in order to investigate the near field distribution characteristic of the Loop Antenna we simulated and measured the near field of a Loop Antenna using optical electric-field sensor in a large Chamber(8.5 m x 7 m x 7 m). The simulation methods were used MoM for frequency domain and FDTD for time domain. From the analysis results, it can be seen that the simulation and measurement results are very aggregated, and the optical electric-field sensor is a certificate of validity. In frequency domain, in case of the optical sensor with vertical polarization is located above the near vertical line of the Loop Antenna the signal strength level is more 15 ㏈ than with horizontal polarization. But in case of the optical sensor located above horizontal line of the Loop Antenna, signal strength level is not different. And, in the time domain, although input signal is positive, in the case of the optical sensor with vertical polarization is located above horizontal line of the Loop Antenna, it can be seen that the received pulse shape is negative.

A Study on Dynamic Models for Ports and Regional Economy (항만과 지역경제간의 동태적 모델에 관한 연구)

  • 오세용;여기태;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.15-23
    • /
    • 2000
  • If a system such as a port and regional economy has a large boundary and complexity, the system's substance is considered as a black box, forecast accuracy will be very low. Futhermore various components in a port and regional economy exert significant influence on each other. To copy with these problem the form of structure models were introduced by using SD model. This study has the issue of simplifying the regional economic effects of the port as contributing to raising the regional income. The regional economic effects of port have various indirect ones except for this. So, SD(System Dynamics) was presented, and applied to simulate port and regional economy.

  • PDF